Newer
Older
import numpy as np
from scipy.interpolate import interp1d
def compute_path_from_wp(start_xp, start_yp, step=0.1):
"""
params:
start_xp (array-like): 1D array of x-positions
start_yp (array-like): 1D array of y-positions
rachelmoan
committed
step (float): interpolation step size
output:
ndarray of shape (3,N) representing the path as x,y,heading
"""
final_xp = []
final_yp = []
delta = step # [m]
for idx in range(len(start_xp) - 1):
rachelmoan
committed
# find the distance between consecutive waypoints
section_len = np.sum(
np.sqrt(
np.power(np.diff(start_xp[idx : idx + 2]), 2)
+ np.power(np.diff(start_yp[idx : idx + 2]), 2)
)
)
rachelmoan
committed
# how many interpolated points are needed to reach the next waypoint
interp_range = np.linspace(0, 1, np.floor(section_len / delta).astype(int))
# interpolate between waypoints
fx = interp1d(np.linspace(0, 1, 2), start_xp[idx : idx + 2], kind=1)
fy = interp1d(np.linspace(0, 1, 2), start_yp[idx : idx + 2], kind=1)
rachelmoan
committed
# append the interpolated points to the final path
final_xp = np.append(final_xp, fx(interp_range)[1:])
final_yp = np.append(final_yp, fy(interp_range)[1:])
dx = np.append(0, np.diff(final_xp))
dy = np.append(0, np.diff(final_yp))
theta = np.arctan2(dy, dx)
return np.vstack((final_xp, final_yp, theta))
def get_nn_idx(state, path):
"""
Helper function to find the index of the nearest path point to the current state.
Args:
state (array-like): Current state [x, y, theta]
path (ndarray): Path points
Returns:
int: Index of the nearest path point
"""
# distances = np.hypot(path[0, :] - state[0], path[1, :] - state[1])
distances = np.linalg.norm(path[:2]-state[:2].reshape(2,1), axis=0)
return np.argmin(distances)
rachelmoan
committed
def fix_angle_reference(angle_ref, angle_init):
"""
Removes jumps greater than 2PI to smooth the heading.
Args:
angle_ref (array-like): Reference angles
angle_init (float): Initial angle
Returns:
array-like: Smoothed reference angles
"""
diff_angle = angle_ref - angle_init
diff_angle = np.unwrap(diff_angle)
return angle_init + diff_angle
def get_ref_trajectory(state, path, target_v, T, DT):
"""
Generates a reference trajectory for the Roomba.
Args:
state (array-like): Current state [x, y, theta]
path (ndarray): Path points [x, y, theta] in the global frame
target_v (float): Desired speed
T (float): Control horizon duration
DT (float): Control horizon time-step
Returns:
ndarray: Reference trajectory [x_k, y_k, theta_k] in the ego frame
"""
K = int(T / DT)
xref = np.zeros((3, K)) # Reference trajectory for [x, y, theta]
rachelmoan
committed
# find the nearest path point to the current state
rachelmoan
committed
# calculate the cumulative distance along the path
cdist = np.append([0.0], np.cumsum(np.hypot(np.diff(path[0, :]), np.diff(path[1, :]))))
cdist = np.clip(cdist, cdist[0], cdist[-1])
rachelmoan
committed
# determine where we want the robot to be at each time step
start_dist = cdist[ind]
interp_points = [d * DT * target_v + start_dist for d in range(1, K + 1)]
rachelmoan
committed
# interpolate between these points to get the reference trajectory
xref[0, :] = np.interp(interp_points, cdist, path[0, :])
xref[1, :] = np.interp(interp_points, cdist, path[1, :])
xref[2, :] = np.interp(interp_points, cdist, path[2, :])
# Transform to ego frame
dx = xref[0, :] - state[0]
dy = xref[1, :] - state[1]
xref[0, :] = dx * np.cos(-state[2]) - dy * np.sin(-state[2]) # X
xref[1, :] = dy * np.cos(-state[2]) + dx * np.sin(-state[2]) # Y
xref[2, :] = path[2, ind] - state[2] # Theta
rachelmoan
committed
# Normalize the angles
xref[2, :] = (xref[2, :] + np.pi) % (2.0 * np.pi) - np.pi
xref[2, :] = fix_angle_reference(xref[2, :], xref[2, 0])
return xref