Skip to content
Snippets Groups Projects
utils.py 3.69 KiB
Newer Older
  • Learn to ignore specific revisions
  • import numpy as np
    from scipy.interpolate import interp1d
    
    
    def compute_path_from_wp(start_xp, start_yp, step=0.1):
        """
        params:
            start_xp (array-like): 1D array of x-positions
            start_yp (array-like): 1D array of y-positions
            step (float): intepolation step
    
        output:
            ndarray of shape (3,N) representing the  path as x,y,heading
        """
        final_xp = []
        final_yp = []
        delta = step  # [m]
        for idx in range(len(start_xp) - 1):
            section_len = np.sum(
                np.sqrt(
                    np.power(np.diff(start_xp[idx : idx + 2]), 2)
                    + np.power(np.diff(start_yp[idx : idx + 2]), 2)
                )
            )
            interp_range = np.linspace(0, 1, np.floor(section_len / delta).astype(int)) # how many dots in 
            fx = interp1d(np.linspace(0, 1, 2), start_xp[idx : idx + 2], kind=1)
            fy = interp1d(np.linspace(0, 1, 2), start_yp[idx : idx + 2], kind=1)
    
            final_xp = np.append(final_xp, fx(interp_range)[1:])
            final_yp = np.append(final_yp, fy(interp_range)[1:])
        dx = np.append(0, np.diff(final_xp))
        dy = np.append(0, np.diff(final_yp))
        theta = np.arctan2(dy, dx)
        return np.vstack((final_xp, final_yp, theta))
    
    def get_nn_idx(state, path):
        """
        Helper function to find the index of the nearest path point to the current state.
        Args:
            state (array-like): Current state [x, y, theta]
            path (ndarray): Path points
    
        Returns:
            int: Index of the nearest path point
        """
        # distances = np.hypot(path[0, :] - state[0], path[1, :] - state[1])
        distances = np.linalg.norm(path[:2]-state[:2].reshape(2,1), axis=0)
        return np.argmin(distances)
    
    def get_ref_trajectory(state, path, target_v, T, DT):
        """
        Generates a reference trajectory for the Roomba.
    
        Args:
            state (array-like): Current state [x, y, theta]
            path (ndarray): Path points [x, y, theta] in the global frame
            target_v (float): Desired speed
            T (float): Control horizon duration
            DT (float): Control horizon time-step
    
        Returns:
            ndarray: Reference trajectory [x_k, y_k, theta_k] in the ego frame
        """
        K = int(T / DT)
    
        xref = np.zeros((3, K))  # Reference trajectory for [x, y, theta]
        ind = get_nn_idx(state, path)
    
        cdist = np.append(
            [0.0], np.cumsum(np.hypot(np.diff(path[0, :]), np.diff(path[1, :])))
        )
        cdist = np.clip(cdist, cdist[0], cdist[-1])
    
        start_dist = cdist[ind]
        interp_points = [d * DT * target_v + start_dist for d in range(1, K + 1)]
        xref[0, :] = np.interp(interp_points, cdist, path[0, :])
        xref[1, :] = np.interp(interp_points, cdist, path[1, :])
        xref[2, :] = np.interp(interp_points, cdist, path[2, :])
    
        # Points where the vehicle is at the end of trajectory
        xref_cdist = np.interp(interp_points, cdist, cdist)
        stop_idx = np.where(xref_cdist == cdist[-1])
        
        # Transform to ego frame
        dx = xref[0, :] - state[0]
        dy = xref[1, :] - state[1]
        xref[0, :] = dx * np.cos(-state[2]) - dy * np.sin(-state[2])  # X
        xref[1, :] = dy * np.cos(-state[2]) + dx * np.sin(-state[2])  # Y
        xref[2, :] = path[2, ind] - state[2]  # Theta
    
        def fix_angle_reference(angle_ref, angle_init):
            """
            Removes jumps greater than 2PI to smooth the heading.
    
            Args:
                angle_ref (array-like): Reference angles
                angle_init (float): Initial angle
    
            Returns:
                array-like: Smoothed reference angles
            """
            diff_angle = angle_ref - angle_init
            diff_angle = np.unwrap(diff_angle)
            return angle_init + diff_angle
    
        xref[2, :] = (xref[2, :] + np.pi) % (2.0 * np.pi) - np.pi
        xref[2, :] = fix_angle_reference(xref[2, :], xref[2, 0])
    
        return xref