Newer
Older
# -*- coding: utf-8 -*-
from datetime import datetime
from cadnano.cnenum import PointType
from math import pi,sqrt,exp,floor
import numpy as np
from scipy.special import erf
import scipy.optimize as opt
import os, sys, subprocess
import nbPot
from coords import minimizeRmsd, quaternionToMatrix3, rotationAboutAxis
class HarmonicPotential:
def __init__(self, k, r0, rRange=(0,50), resolution=0.1, maxForce=None, maxPotential=None):
self.maxPotential = maxPotential
self.periodic = False
self.type = "None"
self._kscale = None
def filename(self, prefix='potentials/'):
return "%s%s-%.3f-%.3f.dat" % (prefix, self.type,
def write_file(self, prefix='potentials/'):
r = np.arange( self.rRange[0],
self.rRange[1]+self.resolution,
self.resolution )
dr = r-self.r0
if self.periodic == True:
rSpan = self.rRange[1]-self.rRange[0]
assert(rSpan > 0)
dr = np.mod( dr+0.5*rSpan, rSpan) - 0.5*rSpan
u = 0.5*self.k*dr**2
if self.maxForce is not None:
assert(self.maxForce > 0)
f = np.diff(u)/np.diff(r)
f[f > self.maxForce] = self.maxForce
f[f < -self.maxForce] = -self.maxForce
u = u - np.min(u)
if self.maxPotential is not None:
cmaffeo2
committed
f = np.diff(u)/np.diff(r)
ids = np.where( 0.5*(u[1:]+u[:-1]) > self.maxPotential )[0]
w = np.sqrt(2*self.maxPotential/self.k)
drAvg = 0.5*(np.abs(dr[ids]) + np.abs(dr[ids+1]))
f[ids] = f[ids] * np.exp(-(drAvg-w)/(w))
u[0] = 0
u[1:] = np.cumsum(f*np.diff(r))
u = u - np.min(u)
np.savetxt( self.filename(prefix), np.array([r, u]).T, fmt="%f" )
return hash((self.type, self.k, self.r0, self.rRange, self.resolution, self.maxForce, self.maxPotential, self.periodic))
for a in ("type", "k", "r0", "rRange", "resolution", "maxForce", "maxPotential", "periodic"):
if self.__dict__[a] != other.__dict__[a]:
return False
return True
class NonBonded(HarmonicPotential):
def __init__(self, k, r0, rRange=(0,50), resolution=0.1, maxForce=None, maxPotential=None):
super().__init__(k,r0,rRange,resolution,maxForce,maxPotential)
self.type = "nonbonded"
self._kscale = 1.0
class Bond(HarmonicPotential):
def __init__(self, k, r0, rRange=(0,800), resolution=0.1, maxForce=5, maxPotential=None):
super().__init__(k,r0,rRange,resolution,maxForce,maxPotential)
self.type = "bond"
self._kscale = 1.0
class Angle(HarmonicPotential):
def __init__(self, k, r0, rRange=(0,180), resolution=0.5, maxForce=None, maxPotential=None):
super().__init__(k,r0,rRange,resolution,maxForce,maxPotential)
self.type = "angle"
self._kscale = (180.0/pi)**2
class Dihedral(HarmonicPotential):
def __init__(self, k, r0, rRange=(-180,180), resolution=1, maxForce=None, maxPotential=None):
super().__init__(k,r0,rRange,resolution,maxForce,maxPotential)
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
self.periodic = True
self.type = "dihedral"
self._kscale = (180.0/pi)**2
class Node():
def __init__(self, helix, pos, type="dsDNA"):
self.helix = helix
self.position = np.array(pos)
self.initialPosition = np.array(pos)
self.type = type
self.nodeAbove = None
self.nodeBelow = None
self.xovers = []
self.ssXovers = []
self.orientationNode = None
self.parentNode = None
self.idx = helix.model.numParticles
helix.model.numParticles += 1
def addNodeAbove(self, node, separation):
assert(self.nodeAbove is None)
self.nodeAbove = node
self.nodeAboveSep = separation # bp
def addNodeBelow(self, node, separation):
assert(self.nodeBelow is None)
self.nodeBelow = node
self.nodeBelowSep = separation # bp
def addXover(self, node, fwds, double=False):
## TODO: what is meant by polarity?
self.xovers.append( (node,fwds,double) )
def addSsXover(self, node, fwds):
self.ssXovers.append( (node,fwds) )
def getNodesAbove(self,numNodes,inclusive=False):
assert( type(numNodes) is int and numNodes > 0 )
nodeList,sepList = [[],[]]
n = self
if inclusive:
nodeList.append(n)
for i in range(numNodes):
if n.nodeAbove is None: break
n = n.nodeAbove
nodeList.append(n)
sepList.append(n.nodeBelowSep)
return nodeList,sepList
def getNodesBelow(self,numNodes,inclusive=False):
assert( type(numNodes) is int and numNodes > 0 )
nodeList,sepList = [[],[]]
n = self
if inclusive:
nodeList.append(n)
for i in range(numNodes):
if n.nodeBelow is None: break
n = n.nodeBelow
nodeList.append(n)
sepList.append(n.nodeBelowSep)
return nodeList,sepList
def addOrientationNode(self, node):
assert(self.nodeBelow is None)
self.orientationNode = node
node.parentNode = self
class helix():
def __init__(self, model, part, hid):
self.model = model
self.props = part.getModelProperties().copy() # TODO: maybe move this out of here
self.nodes = dict()
self.orientationNodes = dict()
self.hid = hid
if self.props.get('point_type') == PointType.ARBITRARY:
# TODO add code to encode Parts with ARBITRARY point configurations
raise NotImplementedError("Not implemented")
else:
vh_props, origins = part.helixPropertiesAndOrigins()
for x in vh_props:
self.props[x] = vh_props[x][hid]
self.origin = origins[hid]
x,y = self.origin
self.zIdxToPos = lambda idx: (x*10,y*10,-3.4*idx)
## get twizt
keys = ['bases_per_repeat',
'turns_per_repeat',
'eulerZ','z']
bpr,tpr,eulerZ,z = [vh_props[k][hid] for k in keys]
twist_per_base = tpr*360./bpr
cmaffeo2
committed
self.zIdxToAngle = lambda idx: idx*twist_per_base + eulerZ + 160
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def addNode(self, zIdx, strandOccupancies):
## Determine what kind of node we are making
i = int(round(zIdx))
if i in strandOccupancies[0] and i in strandOccupancies[1]:
type = "dsDNA"
elif i in strandOccupancies[0] or i in strandOccupancies[1]:
# type = "dsDNA"
type = "ssDNA"
else:
raise Exception( "Attempt to add a node at %d where there is no DNA!\n Strand at indeces: %s" % (i,strandOccupancies) )
## Add the node
n = Node(self, self.zIdxToPos(zIdx), type)
if zIdx in self.nodes:
raise Exception("Attempted to add a node in the same location (%d:%.1f) twice!" % (self.hid,zIdx))
self.nodes[zIdx] = n
if type == "dsDNA":
angle = self.zIdxToAngle(zIdx)
pos = np.array([2.0,0,0]).dot( rotationAboutAxis([0,0,1], angle) )
o = Node(self, np.array(self.zIdxToPos(zIdx)) + pos, "O")
self.orientationNodes[zIdx] = o
n.addOrientationNode(o)
## Update ordered list of nodes
if self.model.particles is not None:
model.buildOrderedParticlesList()
return n
def getOrigin(self):
return self.origin
def __iter__(self):
for x in sorted(self.nodes.items(), key=lambda x: x[0]):
yield x
class beadModelTwist():
def __init__(self, part, twistPersistenceLength=75.0, maxBpsPerDNode=4, maxNtsPerSNode=2):
self.numParticles = 0
self.helices = dict()
self.particles = None
self.particleTypeCounts = None
# self._nbParams = set()
self.bonds = set()
self.angles = set()
self.dihedrals = set()
# self._bondParamFiles = set()
# self._angleParamFiles = set()
# self._dihedralParamFiles = set()
self.twistPersistenceLength = twistPersistenceLength
self.apply_extra_crossover_potentials = False
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
self._buildModel(part, maxBpsPerDNode, maxNtsPerSNode)
## Post process the model
self.buildOrderedParticlesList()
self._setTypes()
self._countParticleTypes()
self.buildOrderedParticlesList()
def __iter__(self):
for x in sorted(self.helices.items(), key=lambda x: x[0]):
yield x
def buildOrderedParticlesList(self):
## Create ordered list
particles = [(n,hid,zid) for hid,hlx in self for zid,n in hlx]
particles.extend( [(o,hid,zid) for hid,hlx in self for zid,o in hlx.orientationNodes.items()] )
self.particles = sorted(particles, key=lambda x: (x[0].type, x[0].idx))
## Update node indices
for p,i in zip(self.particles,range(self.numParticles)):
p[0].idx = i
self.initialCoords = np.array([p[0].initialPosition for p in self.particles])
self._nodeHids = np.array([p[1] for p in self.particles])
def _setTypes(self):
for p,hid,zid in self.particles:
if p.type == "O":
p.bps = 0
continue
bps = []
if p.nodeAbove is not None: bps.append(p.nodeAboveSep)
if p.nodeBelow is not None: bps.append(p.nodeBelowSep)
if bps == []: bps = [3]
p.bps = 10*np.mean(bps)
if p.type == "ssDNA":
p.bps *= 0.5
p.bps = int(round(p.bps))
p.type = "%s%d" % (p.type[0], p.bps)
def _countParticleTypes(self):
particleTypeCounts = dict()
for p in self.particles:
t = p[0].type
if t in particleTypeCounts:
particleTypeCounts[t] += 1
else:
particleTypeCounts[t] = 1
self.particleTypeCounts = particleTypeCounts
def addHelix(self, part, hid):
h = helix(self,part,hid)
self.helices[hid] = h
return h
def _helixStrandsToEnds(self, helixStrands):
"""Utility method to convert cadnano strand lists into list of
indices of terminal points"""
endLists = [[],[]]
for endList, strandList in zip(endLists,helixStrands):
lastStrand = None
for s in strandList:
if lastStrand is None:
## first strand
endList.append(s[0])
elif lastStrand[1] != s[0]-1:
assert( s[0] > lastStrand[1] )
endList.extend( [lastStrand[1], s[0]] )
lastStrand = s
if lastStrand is not None:
endList.append(lastStrand[1])
return endLists
def simulate(self, outputPrefix, outputDirectory='output', numSteps=100000000, timestep=100e-6, gpu=0, arbd=None):
self._buildBonds(outputPrefix)
self._buildAngles(outputPrefix)
self._buildDihedrals(outputPrefix)
## Check that potentials don't have hash collisions
for potSet in (self.bonds, self.angles, self.dihedrals):
pots = [p[-1] for p in potSet]
d = dict()
for p in pots:
f = p.filename
if f not in d: d[f]=[]
d[f].append(p)
for f,pots in d.items():
assert( len(set(pots)) == 1 )
# assert(type(numSteps) is int)
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
if outputDirectory == '': outputDirectory='.'
if arbd is None:
for path in os.environ["PATH"].split(os.pathsep):
path = path.strip('"')
fname = os.path.join(path, "arbd")
if os.path.isfile(fname) and os.access(fname, os.X_OK):
arbd = fname
break
if not os.path.exists(arbd):
raise Exception("ARBD was not found")
if not os.path.isfile(arbd):
raise Exception("ARBD was not found")
if not os.access(arbd, os.X_OK):
raise Exception("ARBD is not executable")
if not os.path.exists(outputDirectory):
os.makedirs(outputDirectory)
elif not os.path.isdir(outputDirectory):
raise Exception("outputDirectory '%s' is not a directory!" % outputDirectory)
self.writePdb( outputPrefix + ".pdb" )
self.writePsf( outputPrefix + ".psf" )
self.writeArbdFiles( outputPrefix, numSteps=numSteps, timestep=timestep )
env = os.environ.copy()
env["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
## http://stackoverflow.com/questions/18421757/live-output-from-subprocess-command
# cmd = "%s -g %d %s.bd %s/%s" % (arbd, gpu, outputPrefix, outputDirectory, outputPrefix)
# cmd = (arbd, (-g %d %s.bd %s/%s" % (gpu, outputPrefix, outputDirectory, outputPrefix))
cmd = (arbd, '-g', "%d" % gpu, "%s.bd" % outputPrefix, "%s/%s" % (outputDirectory, outputPrefix))
cmd = tuple(str(x) for x in cmd)
print("Running ARBD with: %s" % " ".join(cmd))
process = subprocess.Popen(cmd, env=env, stdout=subprocess.PIPE, universal_newlines=True)
for line in process.stdout:
# for line in iter(process.stdout.readline, b''):
sys.stdout.write(line)
sys.stdout.flush()
# sys.stdout.write(line.decode(sys.stdout.encoding))
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# -------------------------- #
# Methods for building model #
# -------------------------- #
def _buildModel(self, part, maxBpsPerDNode, maxNtsPerSNode):
# maxVhelixId = part.getIdNumMax()
props = part.getModelProperties().copy()
# print(props)
if props.get('point_type') == PointType.ARBITRARY:
# TODO add code to encode Parts with ARBITRARY point configurations
raise NotImplementedError("Not implemented")
else:
vh_props, origins = part.helixPropertiesAndOrigins()
# print(' VIRTUAL HELICES:', vh_props)
# # print(' ORIGINS:', origins)
# group_props['virtual_helices'] = vh_props
# group_props['origins'] = origins
## TODO: compartmentalize following
## Loop over virtual helices and build lists of strands
vh_list = []
strand_list = []
xover_list = []
numHID = part.getIdNumMax() + 1
for id_num in range(numHID):
offset_and_size = part.getOffsetAndSize(id_num)
if offset_and_size is None:
# add a placeholder
vh_list.append((id_num, 0))
strand_list.append(None)
# prop_list.append(None)
else:
offset, size = offset_and_size
vh_list.append((id_num, size))
fwd_ss, rev_ss = part.getStrandSets(id_num)
# for s in fwd_ss:
# print(' VHELIX %d fwd_ss:' % id_num, s)
fwd_idxs, fwd_colors = fwd_ss.dump(xover_list)
rev_idxs, rev_colors = rev_ss.dump(xover_list)
strand_list.append((fwd_idxs, rev_idxs))
# if id_num < 2:
# print( fwd_idxs )
# for s in fwd_ss:
# print( s.insertionsOnStrand() )
## prop_list.append((fwd_colors, rev_colors))
# for s in strand_list:
# print( s )
## Get dictionary of insertions
allInsertions = part.insertions()
## Expand strand_lists for crossover filtering
expandedStrandList = []
for fwdRevStrands in strand_list:
tmp = []
if fwdRevStrands is not None:
for strands in fwdRevStrands:
fwdOrRev = []
for a,b in strands: fwdOrRev.extend(range(a,b+1))
tmp.append(fwdOrRev)
expandedStrandList.append(tmp)
## Find crossovers involving ssDNA and dsDNA
ssXoList, dsXoList, extraInterhelicalBondList = [[],[],[]]
for entry in xover_list:
h1,f1,z1,h2,f2,z2 = entry
if strand_list[h1] is None or strand_list[h2] is None:
print("WARNING: crossover to empty helix")
continue
ds1 = z1 in expandedStrandList[h1][0] and z1 in expandedStrandList[h1][1]
ds2 = z2 in expandedStrandList[h2][0] and z2 in expandedStrandList[h2][1]
occ1Above = z1+1 in expandedStrandList[h1][0] or z1+1 in expandedStrandList[h1][1]
occ2Above = z2+1 in expandedStrandList[h2][0] or z2+1 in expandedStrandList[h2][1]
occ1Below = z1-1 in expandedStrandList[h1][0] or z1-1 in expandedStrandList[h1][1]
occ2Below = z2-1 in expandedStrandList[h2][0] or z2-1 in expandedStrandList[h2][1]
if ((not occ1Above) and (not occ2Below)) or \
((not occ1Below) and (not occ2Above)):
extraInterhelicalBondList.append(entry)
else:
if ds1 and ds2:
ssXoList.append(entry)
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
## Build dictionary of dsDNA crossovers
xoDicts = [dict() for i in range(numHID)]
for hid1 in range(numHID):
tmp = xoDicts[hid1]
for hid2 in range(numHID):
allXos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2}
allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} )
allXos = sorted(list(allXos), key = lambda x: (x[0],x[1]))
## Replace each double-crossover with a single one
excludedXos, extraXos = [set(),set()]
for i in range(len(allXos)):
xoi = allXos[i]
for j in range(i+1,len(allXos)):
xoj = allXos[j]
if xoj[0] - xoi[0] > 2: break
if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \
xoi[2] == xoj[2] and xoi[3] == xoj[3]:
excludedXos.add(xoi)
excludedXos.add(xoj)
extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) )
xos = {xo for xo in allXos if xo not in excludedXos}
xos.update(extraXos)
## Set dictionary entry
xos = list(xos)
if len(xos) > 0:
tmp[hid2] = xos
## Build dictionary of dsDNA crossovers
xoDicts = [dict() for i in range(numHID)]
for hid1 in range(numHID):
tmp = xoDicts[hid1]
for hid2 in range(numHID):
allXos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2}
allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} )
allXos = sorted(list(allXos), key = lambda x: (x[0],x[1]))
## Replace each double-crossover with a single one
excludedXos, extraXos = [set(),set()]
for i in range(len(allXos)):
xoi = allXos[i]
for j in range(i+1,len(allXos)):
xoj = allXos[j]
if xoj[0] - xoi[0] > 2: break
if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \
xoi[2] == xoj[2] and xoi[3] == xoj[3]:
excludedXos.add(xoi)
excludedXos.add(xoj)
extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) )
xos = {xo for xo in allXos if xo not in excludedXos}
xos.update(extraXos)
## Set dictionary entry
xos = list(xos)
if len(xos) > 0:
tmp[hid2] = xos
## Build dictionary of ssDNA crossovers
ssXoDicts = [dict() for i in range(numHID)]
for hid1 in range(numHID):
tmp = ssXoDicts[hid1]
for hid2 in range(numHID):
xos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in ssXoList if h1 == hid1 and h2 == hid2}
xos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in ssXoList if h2 == hid1 and h1 == hid2} )
xos = sorted(list(xos), key = lambda x: (x[0],x[1]))
## Set dictionary entry
if len(xos) > 0:
tmp[hid2] = xos
## Build helices
for hid in range(numHID):
# print("Working on helix",hid)
helixStrands = strand_list[hid]
if helixStrands is None:
continue
## Build list of tuples containing (idx,length) of insertions/skips
insertions = sorted( [(i[0],i[1].length()) for i in allInsertions[hid].items()],
key=lambda x: x[0] )
## Build list of strand ends and list of mandatory node locations
ends1,ends2 = self._helixStrandsToEnds(helixStrands)
# xoZids = [x for x in xoDicts2[hid].keys()]
## Find crossovers for this helix
xoZids = [x[1] for h0 in range(hid) if hid in xoDicts[h0] for x in xoDicts[h0][hid]]
xoZids.extend([x[0] for hid2,xos in xoDicts[hid].items() for x in xos])
xoZids.extend([x[1] for h0 in range(hid) if hid in ssXoDicts[h0] for x in ssXoDicts[h0][hid]])
xoZids.extend([x[0] for hid2,xos in ssXoDicts[hid].items() for x in xos])
reqNodeZids = sorted(list(set( ends1 + ends2 + xoZids ) ) )
## Build lists of which nt sites are occupied in the helix
strandOccupancies = [ [x for i in range(0,len(e),2)
for x in range(e[i],e[i+1]+1)]
for e in (ends1,ends2) ]
## Build helix by adding nodes
beadHelix = self.addHelix(part,hid)
if hid in ():
print("%d nodes:" %hid,reqNodeZids)
print("orig xos:",[xo for xo in xover_list if xo[0] == hid or xo[3] == hid])
print("xosZids:", sorted(xoZids) )
print("strandOccupancy1:",strandOccupancies[0])
print("strandOccupancy2:",strandOccupancies[1])
prevNode = None
for i in range( len(reqNodeZids)-1 ):
zid1,zid2 = reqNodeZids[i:i+2]
## Check that there are nts between zid1 and zid2 before adding nodes
zMid = int(0.5*(zid1+zid2))
if zMid in strandOccupancies[0] and zMid in strandOccupancies[1]:
## dsDNA
maxBpsPerNode = maxBpsPerDNode
if zMid in strandOccupancies[0] or zMid in strandOccupancies[1]:
## ssDNA
maxBpsPerNode = maxNtsPerSNode
else:
continue
numBps = zid2-zid1
# if numBps < 2:
# print(hid,zid1,zid2)
# assert(numBps >= 1)
for ins_idx,length in insertions:
## TODO: ensure placement of insertions is correct
## (e.g. are insertions at the ends handled correctly?)
if ins_idx < zid1:
continue
if ins_idx >= zid2:
break
numBps += length
# if numBps = 0:
# print("WARNING: found stretch of DNA with 0 length; skipping")
# next
nodesBetween = round( float(numBps-1)/maxBpsPerNode )
if nodesBetween < 0:
nodesBetween = 0
bpsPerNode = float(numBps)/(nodesBetween+1)
if bpsPerNode == 0:
bpsPerNode = 0.1
zidPerNode = float(zid2-zid1)/(nodesBetween+1)
try:
if prevNode is None:
prevNode = beadHelix.addNode( zid1, strandOccupancies )
for i in range(nodesBetween):
node = beadHelix.addNode( zid1+(i+1)*zidPerNode, strandOccupancies )
self._connectNodes(prevNode, node, bpsPerNode)
prevNode = node
node = beadHelix.addNode( zid2, strandOccupancies )
self._connectNodes(prevNode, node, bpsPerNode)
except:
print(hid,zid1,zid2,nodesBetween,bpsPerNode)
raise Exception("ERROR")
prevNode = None
if (int(floor(zid2+1)) in strandOccupancies[0]) or \
(int(floor(zid2+1)) in strandOccupancies[1]):
prevNode = node
## Add extra intrahelical bonds
## Add crossovers
for entry in extraInterhelicalBondList:
h1,f1,z1,h2,f2,z2 = entry
n1 = self.helices[h1].nodes[z1]
n2 = self.helices[h2].nodes[z2]
try:
self._connectNodes(n1,n2,1)
except:
assert(True)
try:
self._connectNodes(n2,n1,1)
except:
assert(True)
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
## Add crossovers
for hid1 in range(numHID):
for hid2, xos in xoDicts[hid1].items():
for xo in xos:
self._addCrossover(hid1,hid2,xo)
## Add ssDNA xovers
for hid1 in range(numHID):
for hid2, xos in ssXoDicts[hid1].items():
for xo in xos:
self._addSsCrossover(hid1,hid2,xo)
return
def _connectNodes(self, below, above, sep):
below.addNodeAbove(above, sep)
above.addNodeBelow(below, sep)
def _addCrossover(self, hid1, hid2, xo):
zid1, zid2, isFwd1, isFwd2 = xo
node1 = self.helices[hid1].nodes[zid1]
node2 = self.helices[hid2].nodes[zid2]
## TODO add polarity
polarity = 0
node1.addXover(node2, (isFwd1, isFwd2))
node2.addXover(node1, (isFwd2, isFwd1))
def _addSsCrossover(self, hid1, hid2, xo):
zid1, zid2, isFwd1, isFwd2 = xo
node1 = self.helices[hid1].nodes[zid1]
node2 = self.helices[hid2].nodes[zid2]
## TODO add polarity
polarity = 0
node1.addSsXover(node2, isFwd1)
node2.addSsXover(node1, isFwd2)
def addModel(self, model):
assert( isinstance(model, type(self)) )
hidOffset = max( self.helices.keys() ) + 1
# nidOffset = self.numParticles
for hid,h in model:
self.helices[hid+hidOffset] = h
self.numParticles += model.numParticles
self.buildOrderedParticlesList()
self._setTypes()
self._countParticleTypes()
def backmap(self, simplerModel, simplerModelCoords,
dsDnaHelixNeighborDist=50, dsDnaAllNeighborDist=30,
cmaffeo2
committed
ssDnaHelixNeighborDist=25, ssDnaAllNeighborDist=25):
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
## Assign each bead to a bead in simplerModel
mapToSimplerModel = dict()
cgWeight = dict()
for hDict,cgHDict in zip(self,simplerModel):
assert(hDict[0] == cgHDict[0])
h,cgH = [x[1] for x in (hDict,cgHDict)] # get helix
zIdxs = np.array( sorted([i for i,b in cgH]) )
for i,b in h:
cgi = np.searchsorted(zIdxs,i,side='left',sorter=None)
cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)]
mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)]
for i,b in h.orientationNodes.items():
cgi = np.searchsorted(zIdxs,i,side='left',sorter=None)
cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)]
mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)]
## Find new axis and position of each bead using neighborhood
beads = [b for h in self for i,b in h[1].nodes.items()]
## Find transformation for each bead of simplerModel
trans = dict()
for b in list(set([b for i,bs in mapToSimplerModel.items() for b in bs])):
helixCutoff = dsDnaHelixNeighborDist if b.type[0] in ('d','O') else ssDnaHelixNeighborDist
allCutoff = dsDnaAllNeighborDist if b.type[0] in ('d','O') else ssDnaAllNeighborDist
def positionsAreLinear(pos):
if len(pos) == 0: return False
center = np.mean(pos,axis=0)
cPos = pos-center
return np.sum( np.abs( np.linalg.eig( cPos.T.dot(cPos) )[0] ) > 1e-3 ) == 3
posOld = []
while len(ids) <= 3 or not positionsAreLinear(posOld):
if attempts > 15: raise Exception("Too many attempts to find a neighborhood for backmaping bead %d" % b.idx)
ids = simplerModel._getNeighborhoodIds(b, simplerModelCoords, helixCutoff, allCutoff)
posOld = np.array( [simplerModel.particles[i][0].initialPosition for i in ids] )
if attempts > 1:
print("Warning, increased allCutoff to",allCutoff)
posNew = np.array( [simplerModelCoords[i] for i in ids] )
trans[b.idx] = minimizeRmsd( posOld, posNew )
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
## Optionally smooth orientations
## Apply transformation to each bead of self
beads.extend( [b for h in self for i,b in h[1].orientationNodes.items()] )
for b in beads:
cgb, = mapToSimplerModel[b.idx]
cgi = cgb.idx
r0 = simplerModel.particles[cgi][0].initialPosition
R,c0,c1 = trans[cgi]
b.position = (b.initialPosition - r0).dot(R) + simplerModelCoords[cgi]
assert( np.all(np.isreal( b.position )) )
def _getNeighborhoodIds(self, bead, coords, helixCutoff=50, allCutoff=np.sqrt(35)):
i = bead.idx
coords0 = self.initialCoords
# print(coords0[i,:])
coordsI = np.outer(coords0[i,:],np.ones([len(coords0),1])).T
dr2Initial = np.sum((coords0 - coordsI)**2, axis=-1)
dr2Final = np.sum((coords - coords[i,:])**2, axis=-1)
## Include all in same helix within 5 nm of bead after simulation
ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) )[0] )
ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) * (dr2Initial < 100**2) )[0] )
## Include all within 3.5 nm both before AND after simulation
ret.extend( list( np.where( (dr2Final < allCutoff**2) * (dr2Initial < allCutoff**2) )[0] ) )
return sorted(list(set(ret)))
# -------------------------- #
# Methods for querying model #
# -------------------------- #
def _getIntrahelicalNodeSeries(self,seriesLen):
nodeSeries = set()
for hid,hlx in self:
for zid,n in hlx:
nodeList,sepList = n.getNodesAbove(seriesLen-1, inclusive = True)
if len(nodeList) == seriesLen:
nodeList = tuple(nodeList)
sepList = tuple(sepList)
nodeSeries.add( tuple((nodeList,sepList)) )
return nodeSeries
def _getIntrahelicalBonds(self):
return self._getIntrahelicalNodeSeries(2)
def _getIntrahelicalAngles(self):
return self._getIntrahelicalNodeSeries(3)
def _getOrientationBonds(self):
nodeSeries = set()
for hid,hlx in self:
for zid,n in hlx:
if n.orientationNode is not None:
nodeSeries.add( tuple(((n.orientationNode,n),(0.2,))) )
return nodeSeries
def _getOrientationAngles(self):
nodeSeries = set()
for hid,hlx in self:
for zid,n in hlx:
if n.orientationNode is not None and n.nodeAbove is not None:
nodeSeries.add( tuple(((n.orientationNode,n,n.nodeAbove),(0.2, n.nodeAboveSep))) )
return nodeSeries
def _getOrientationDihedrals(self):
nodeSeries = set()
for hid,hlx in self:
for zid,n1 in hlx:
if n1.nodeAbove is not None:
n2 = n1.nodeAbove
if n1.orientationNode is not None and n2.orientationNode is not None:
nodeSeries.add( tuple(((n1.orientationNode,n1,n2,n2.orientationNode),
(0.2, n1.nodeAboveSep, 0.2))) )
return nodeSeries
def _getCrossoverBonds(self):
return { ((n, xo[0]), xo[1])
for hid,hlx in self
for zid,n in hlx for xo in n.xovers if n.idx < xo[0].idx }
def _getSsCrossoverBonds(self):
return { ((n, xo[0]), xo[1])
for hid,hlx in self
for zid,n in hlx for xo in n.ssXovers if n.idx < xo[0].idx }
def _getCrossoverAnglesAndDihedrals(self):
angles,dihedrals = [set(),set()]
contiguousCrossovers = []
for hid,hlx in self.helices.items():
crossovers = []
bpsBetween = 0
for zid,n in hlx:
## Search for contiguous crossovers
if n.nodeBelow is None or n.type[0] != "d":
## Found ssDNA or a gap; reset search
if len(crossovers) > 0:
contiguousCrossovers.append(crossovers)
crossovers = []
bpsBetween = 0
if n.nodeBelow is not None:
bpsBetween += n.nodeBelowSep
if len(n.xovers) > 0:
crossovers.append( (n,bpsBetween) )
if len(crossovers) > 0:
contiguousCrossovers.append(crossovers)
## Process contiguousCrossovers
for crossovers in contiguousCrossovers:
for i in range(len(crossovers)-1):
ni,bpi = crossovers[i]
# for j in range(i+1,len(crossovers)):
for j in range(i+1,i+2): # Just look at adjacent crossovers
assert(j == i+1)
nj,bpj = crossovers[j]
bpsBetween = bpj-bpi
if bpsBetween < 60:
for xo1 in ni.xovers:
for xo2 in nj.xovers:
assert( bpsBetween != 0 )
angles.add( ((xo1[0], ni, nj), bpsBetween) )
angles.add( ((ni, nj, xo2[0]), bpsBetween) )
dihedrals.add( ((xo1[0], ni, nj, xo2[0]), bpsBetween, xo1[1], xo2[1]) )
else:
break
return angles, dihedrals
def _removeIntrahelicalConnectionsAbove(self, cutoff):
bonds = self._getIntrahelicalBonds()
for b in bonds:
n1,n2 = b[0]
r2 = np.sum( (n1.position - n2.position)**2 )
if r2 > cutoff**2:
if n1.above == n2:
assert(n2.below == n1)
n1.above = None
n2.below = None
elif n2.above == n1:
assert(n1.below == n2)
n1.below = None
n2.above = None
else:
raise
def _removeCrossoversAbove(self, cutoff):
# bonds = self._getCrossoverBonds()
for hid,hlx in self:
for zid,n1 in hlx:
newXovers = []
for xo in n1.xovers:
n2 = xo[0]
r2 = np.sum( (n1.position - n2.position)**2 )
if r2 < cutoff**2:
newXovers.append(xo)
n1.xovers = newXovers
# def _getBonds(self):
# bonds = self._getIntrahelicalBonds()
# bonds.update( self._getCrossoverBonds() )
# bonds.update( self._getSsCrossoverBonds() )
# return bonds
# -------------------------- #
# Methods for prinitng model #
# -------------------------- #
def writePdb(self, filename):
with open(filename,'w') as fh:
## Write header
fh.write("CRYST1 1000. 1000. 1000. 90.00 90.00 90.00 P 1 1\n")
formatString = "ATOM {:>5d} {:^4s}{:1s}{:3s} {:1s}{:>5s} {:8.3f}{:8.3f}{:8.3f}{:6.2f}{:6.2f}{:2s}{:2f}\n"
for n,hid,zid in self.particles:
## http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM
idx = n.idx
name = n.type
resname = name[:3]
chain = "A"
charge = 0
occ = hid
beta = zid
x,y,z = [x for x in n.position]
assert(idx < 1e5)
resid = "{:<4d}".format(idx)
fh.write( formatString.format(
idx, name[:1], "", resname, chain, resid, x, y, z, occ, beta, "", charge ))
return
def writePsf(self, filename):
with open(filename,'w') as fh:
## Write header
fh.write("PSF NAMD\n\n") # create NAMD formatted psf
## ATOMS section
idx=1
for hid,hlx in self:
for x in hlx:
idx += 1
idx += len(hlx.orientationNodes)
# for x in hlx.orientationNodes.items():
# idx += 1