Skip to content
Snippets Groups Projects
beadModelTwist.py 54.4 KiB
Newer Older
cmaffeo2's avatar
cmaffeo2 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
# -*- coding: utf-8 -*-
from datetime import datetime
from cadnano.cnenum import PointType
from math import pi,sqrt,exp,floor
import numpy as np
from scipy.special import erf
import scipy.optimize as opt
import os, sys, subprocess

import nbPot
from coords import minimizeRmsd, quaternionToMatrix3, rotationAboutAxis


class HarmonicPotential():
    def __init__(self, k, r0, rRange=(0,50), resolution=0.1, maxForce=None, prefix="potentials/"):
        self.k = k
        self.r0 = r0
        self.maxForce = maxForce
        self.rRange = rRange
        self.prefix = prefix
        self.periodic = False
        self.type = "None"
        self._kscale = None
        self._init_hook()

    def filename(self):
        # raise NotImplementedError("Not implemented")
        return "%s%s-%.3f-$.3f.dat" % (self.prefix, self.type,
                                       self.k*self._kscale, self.r0)

    def write_file(self):
        r = np.arange( self.rRange[0], 
                       self.rRange[1]+self.resolution, 
                       self.resolution )
        dr = r-self.r0

        if self.periodic == True:
            rSpan = self.rRange[1]-self.rRange[0]
            assert(rSpan > 0)
            dr = np.mod( dr+0.5*rSpan, rSpan) - 0.5*rSpan 

        u = 0.5*self.k*dr**2

        if self.maxForce is not None:
            assert(self.maxForce > 0)
            f = np.diff(u)/np.diff(r)
            f[f>maxForce] = maxForce
            f[f<-maxForce] = -maxForce
            u[0] = 0
            u[1:] = np.cumsum(f*np.diff(r))
        np.savetxt( self.filename(), np.array([r, u]).T, fmt="%f" )

    def __hash__(self):
        assert(self.type != "None")
        return hash((self.type, self.k, self.r0, self.rRange, self.resolution, self.maxForce, self.prefix, self.periodic))

    def __eq__(self, other):
        for a in ("type", "k", "r0", "rRange", "resolution", "maxForce", "prefix", "periodic"):
            if self.__dict__[a] != other.__dict__[a]:
                return False
        return True

class NonBonded(HarmonicPotential):
    def _init_hook(self):
        self.type = "nonbonded"
        self._kscale = 1.0

class Bond(HarmonicPotential):
    def _init_hook(self):
        self.type = "bond"
        self._kscale = 1.0

class Angle(HarmonicPotential):
    def _init_hook(self):
        self.type = "angle"
        self._kscale = (180.0/pi)**2

class Dihedral(HarmonicPotential):
    def _init_hook(self):
        self.periodic = True
        self.type = "dihedral"
        self._kscale = (180.0/pi)**2

class Node():
    def __init__(self, helix, pos, type="dsDNA"):
        self.helix    = helix
        self.position = np.array(pos)
        self.initialPosition = np.array(pos)
        self.type     = type
        self.nodeAbove = None
        self.nodeBelow = None
        self.xovers = []
        self.ssXovers = []

        self.orientationNode = None
        self.parentNode = None

        self.idx = helix.model.numParticles
        helix.model.numParticles += 1

    def addNodeAbove(self, node, separation):
        assert(self.nodeAbove is None)
        self.nodeAbove = node
        self.nodeAboveSep = separation # bp
    def addNodeBelow(self, node, separation):
        assert(self.nodeBelow is None)
        self.nodeBelow = node
        self.nodeBelowSep = separation # bp

    def addXover(self, node, fwds, double=False):
        ## TODO: what is meant by polarity?
        self.xovers.append( (node,fwds,double) )

    def addSsXover(self, node, fwds):
        self.ssXovers.append( (node,fwds) )
    
    def getNodesAbove(self,numNodes,inclusive=False):
        assert( type(numNodes) is int and numNodes > 0 )

        nodeList,sepList = [[],[]]
        n = self
        if inclusive:
            nodeList.append(n)

        for i in range(numNodes):
            if n.nodeAbove is None: break
            n = n.nodeAbove
            nodeList.append(n)
            sepList.append(n.nodeBelowSep)
            
        return nodeList,sepList

    def getNodesBelow(self,numNodes,inclusive=False):
        assert( type(numNodes) is int and numNodes > 0 )

        nodeList,sepList = [[],[]]
        n = self
        if inclusive:
            nodeList.append(n)

        for i in range(numNodes):
            if n.nodeBelow is None: break
            n = n.nodeBelow
            nodeList.append(n)
            sepList.append(n.nodeBelowSep)
            
        return nodeList,sepList

    def addOrientationNode(self, node):
        assert(self.nodeBelow is None)
        self.orientationNode = node
        node.parentNode = self

class helix():
    def __init__(self, model, part, hid):
        self.model = model
        self.props = part.getModelProperties().copy() # TODO: maybe move this out of here
        self.nodes = dict()
        self.orientationNodes = dict()

        self.hid = hid

        if self.props.get('point_type') == PointType.ARBITRARY:
            # TODO add code to encode Parts with ARBITRARY point configurations
            raise NotImplementedError("Not implemented")
        else:
            vh_props, origins = part.helixPropertiesAndOrigins()
            for x in vh_props:
                self.props[x] = vh_props[x][hid]

            self.origin = origins[hid]
            x,y = self.origin
            self.zIdxToPos = lambda idx: (x*10,y*10,-3.4*idx)

            ## get twizt
            keys = ['bases_per_repeat',
                    'turns_per_repeat',
                    'eulerZ','z']
            bpr,tpr,eulerZ,z = [vh_props[k][hid] for k in keys] 
            twist_per_base = tpr*360./bpr
            self.zIdxToAngle = lambda idx: idx*twist_per_base + eulerZ

    def addNode(self, zIdx, strandOccupancies):
        ## Determine what kind of node we are making
        i = int(round(zIdx))
        if i in strandOccupancies[0] and i in strandOccupancies[1]:
            type = "dsDNA"
        elif i in strandOccupancies[0] or i in strandOccupancies[1]:
            # type = "dsDNA"
            type = "ssDNA"
        else:
            raise Exception( "Attempt to add a node at %d where there is no DNA!\n Strand at indeces: %s" % (i,strandOccupancies) )
        ## Add the node
        n = Node(self, self.zIdxToPos(zIdx), type)

        if zIdx in self.nodes:
            raise Exception("Attempted to add a node in the same location (%d:%.1f) twice!" % (self.hid,zIdx))

        self.nodes[zIdx] = n

        if type == "dsDNA":
            angle = self.zIdxToAngle(zIdx)
            pos = np.array([2.0,0,0]).dot( rotationAboutAxis([0,0,1], angle) )
            o = Node(self, np.array(self.zIdxToPos(zIdx)) + pos, "O")
            self.orientationNodes[zIdx] = o
            n.addOrientationNode(o)

        ## Update ordered list of nodes 
        if self.model.particles is not None:
            model.buildOrderedParticlesList()

        return n

    def getOrigin(self):
        return self.origin

    def __iter__(self):
        for x in sorted(self.nodes.items(), key=lambda x: x[0]):
            yield x
    
class beadModelTwist():

    def __init__(self, part, twistPersistenceLength=75.0, maxBpsPerDNode=4, maxNtsPerSNode=2):
        self.numParticles = 0
        self.helices = dict()
        self.particles = None
        self.particleTypeCounts = None

        # self._nbParams = set()
        self._bondParams = set()
        self._angleParams = set()
        self._dihedralParams = set()

        self._nbParamFiles = []
        self._bondParamFiles = set()
        self._angleParamFiles = set()
        self._dihedralParamFiles = set()

        self.twistPersistenceLength = twistPersistenceLength


        self._buildModel(part, maxBpsPerDNode, maxNtsPerSNode)
        
        ## Post process the model
        self.buildOrderedParticlesList()
        self._setTypes()
        self._countParticleTypes()
        self.buildOrderedParticlesList()

    def __iter__(self):
        for x in sorted(self.helices.items(), key=lambda x: x[0]):
            yield x

    def buildOrderedParticlesList(self):
        ## Create ordered list
        particles = [(n,hid,zid) for hid,hlx in self for zid,n in hlx]        
        particles.extend( [(o,hid,zid) for hid,hlx in self for zid,o in hlx.orientationNodes.items()] )

        self.particles = sorted(particles, key=lambda x: (x[0].type, x[0].idx))
        
        ## Update node indices
        for p,i in zip(self.particles,range(self.numParticles)):
            p[0].idx = i
            
        self.initialCoords = np.array([p[0].initialPosition for p in self.particles])
        self._nodeHids = np.array([p[1] for p in self.particles])

    def _setTypes(self):
        for p,hid,zid in self.particles:
            if p.type == "O":
                p.bps = 0
                continue

            bps = []
            if p.nodeAbove is not None: bps.append(p.nodeAboveSep)
            if p.nodeBelow is not None: bps.append(p.nodeBelowSep)
            if bps == []: bps = [3]
            p.bps = 10*np.mean(bps)

            if p.type == "ssDNA":
                p.bps *= 0.5

            p.bps = int(round(p.bps))
            p.type = "%s%d" % (p.type[0], p.bps)

    def _countParticleTypes(self):
        particleTypeCounts = dict()
        for p in self.particles:
            t = p[0].type
            if t in particleTypeCounts:
                particleTypeCounts[t] += 1
            else:
                particleTypeCounts[t] = 1
        self.particleTypeCounts = particleTypeCounts

    def addHelix(self, part, hid):
        h = helix(self,part,hid)
        self.helices[hid] = h
        return h
    
    def _helixStrandsToEnds(self, helixStrands):

        """Utility method to convert cadnano strand lists into list of
        indices of terminal points"""

        endLists = [[],[]]
        for endList, strandList in zip(endLists,helixStrands):
            lastStrand = None
            for s in strandList:
                if lastStrand is None:
                    ## first strand
                    endList.append(s[0])
                elif lastStrand[1] != s[0]-1: 
                    assert( s[0] > lastStrand[1] )
                    endList.extend( [lastStrand[1], s[0]] )
                lastStrand = s
            if lastStrand is not None:
                endList.append(lastStrand[1])
        return endLists
    
    def simulate(self, outputPrefix, outputDirectory='output', numSteps=100000000, timestep=100e-6, gpu=0, arbd=None):
        assert(type(gpu) is int)
        assert(type(numSteps) is int)
        if outputDirectory == '': outputDirectory='.'
            
        if arbd is None:
            for path in os.environ["PATH"].split(os.pathsep):
                path = path.strip('"')
                fname = os.path.join(path, "arbd")
                if os.path.isfile(fname) and os.access(fname, os.X_OK):
                    arbd = fname
                    break

        if not os.path.exists(arbd):
            raise Exception("ARBD was not found")
        if not os.path.isfile(arbd):
            raise Exception("ARBD was not found")
        if not os.access(arbd, os.X_OK):
            raise Exception("ARBD is not executable")

        if not os.path.exists(outputDirectory):
            os.makedirs(outputDirectory)
        elif not os.path.isdir(outputDirectory):
            raise Exception("outputDirectory '%s' is not a directory!" % outputDirectory)
            

        self.writePdb( outputPrefix + ".pdb" )
        self.writePsf( outputPrefix + ".psf" )
        self.writeArbdFiles( outputPrefix, numSteps=numSteps, timestep=timestep )

        ## http://stackoverflow.com/questions/18421757/live-output-from-subprocess-command
        # cmd = "%s -g %d %s.bd %s/%s" % (arbd, gpu, outputPrefix, outputDirectory, outputPrefix)
        # cmd = (arbd, (-g %d %s.bd %s/%s" % (gpu, outputPrefix, outputDirectory, outputPrefix))
        cmd = (arbd, '-g', "%d" % gpu, "%s.bd" % outputPrefix, "%s/%s" % (outputDirectory, outputPrefix))
        cmd = tuple(str(x) for x in cmd)

        print("Running ARBD with: %s" % " ".join(cmd))
        process = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True)
        for line in process.stdout:
        # for line in iter(process.stdout.readline, b''):
            sys.stdout.write(line)
            # sys.stdout.write(line.decode(sys.stdout.encoding))
    
    # -------------------------- #
    # Methods for building model #
    # -------------------------- #
    def _buildModel(self, part, maxBpsPerDNode, maxNtsPerSNode):
        # maxVhelixId = part.getIdNumMax()
        
        props = part.getModelProperties().copy()
        # print(props)

        if props.get('point_type') == PointType.ARBITRARY:
            # TODO add code to encode Parts with ARBITRARY point configurations
            raise NotImplementedError("Not implemented")
        else:
            vh_props, origins = part.helixPropertiesAndOrigins()
            # print(' VIRTUAL HELICES:', vh_props)
            # # print(' ORIGINS:', origins)
            # group_props['virtual_helices'] = vh_props
            # group_props['origins'] = origins
            
        ## TODO: compartmentalize following
        ## Loop over virtual helices and build lists of strands 
        vh_list = []
        strand_list = []
        xover_list = []
        numHID = part.getIdNumMax() + 1
        for id_num in range(numHID):
            offset_and_size = part.getOffsetAndSize(id_num)
            if offset_and_size is None:
                # add a placeholder
                vh_list.append((id_num, 0))
                strand_list.append(None)
                # prop_list.append(None)
            else:
                offset, size = offset_and_size
                vh_list.append((id_num, size))
                fwd_ss, rev_ss = part.getStrandSets(id_num)
                # for s in fwd_ss:
                #     print(' VHELIX %d fwd_ss:' % id_num, s)
                fwd_idxs, fwd_colors  = fwd_ss.dump(xover_list)
                rev_idxs, rev_colors  = rev_ss.dump(xover_list)
                strand_list.append((fwd_idxs, rev_idxs))

                # if id_num < 2:
                #     print( fwd_idxs )
                #     for s in fwd_ss:
                #         print( s.insertionsOnStrand() )
                
                ## prop_list.append((fwd_colors, rev_colors))
                # for s in strand_list:
                #     print( s )
                

        ## Get dictionary of insertions 
        allInsertions = part.insertions()

        ## Expand strand_lists for crossover filtering 
        expandedStrandList = []
        for fwdRevStrands in strand_list:
            tmp = []
            if fwdRevStrands is not None:
                for strands in fwdRevStrands:
                    fwdOrRev = []
                    for a,b in strands: fwdOrRev.extend(range(a,b+1))
                    tmp.append(fwdOrRev)
            expandedStrandList.append(tmp)

        ## Find crossovers involving ssDNA and dsDNA
        ssXoList, dsXoList, extraInterhelicalBondList = [[],[],[]]
        for entry in xover_list:
            h1,f1,z1,h2,f2,z2 = entry
            if strand_list[h1] is None or strand_list[h2] is None:
                print("WARNING: crossover to empty helix")
                continue

            ds1 = z1 in expandedStrandList[h1][0] and z1 in expandedStrandList[h1][1]
            ds2 = z2 in expandedStrandList[h2][0] and z2 in expandedStrandList[h2][1]
            if ds1 and ds2:
                if h1 != h2:
                    dsXoList.append(entry)
                else:
                    extraInterhelicalBondList.append(entry)
            else:
                ssXoList.append(entry)

        ## Build dictionary of dsDNA crossovers
        xoDicts = [dict() for i in range(numHID)]
        for hid1 in range(numHID):
            tmp = xoDicts[hid1]
            for hid2 in range(numHID):
                allXos       = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2}
                allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} )
                allXos = sorted(list(allXos), key = lambda x: (x[0],x[1]))

                ## Replace each double-crossover with a single one
                excludedXos, extraXos = [set(),set()]
                for i in range(len(allXos)):
                    xoi = allXos[i]
                    for j in range(i+1,len(allXos)):
                        xoj = allXos[j]
                        if xoj[0] - xoi[0] > 2: break
                        if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \
                           xoi[2]   == xoj[2] and xoi[3]   == xoj[3]:
                            excludedXos.add(xoi)
                            excludedXos.add(xoj)
                            extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) )
                xos = {xo for xo in allXos if xo not in excludedXos}
                xos.update(extraXos)
            
                ## Set dictionary entry
                xos = list(xos)
                if len(xos) > 0:
                    tmp[hid2] = xos

        ## Build dictionary of dsDNA crossovers
        xoDicts = [dict() for i in range(numHID)]
        for hid1 in range(numHID):
            tmp = xoDicts[hid1]
            for hid2 in range(numHID):
                allXos       = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2}
                allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} )
                allXos = sorted(list(allXos), key = lambda x: (x[0],x[1]))

                ## Replace each double-crossover with a single one
                excludedXos, extraXos = [set(),set()]
                for i in range(len(allXos)):
                    xoi = allXos[i]
                    for j in range(i+1,len(allXos)):
                        xoj = allXos[j]
                        if xoj[0] - xoi[0] > 2: break
                        if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \
                           xoi[2]   == xoj[2] and xoi[3]   == xoj[3]:
                            excludedXos.add(xoi)
                            excludedXos.add(xoj)
                            extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) )
                xos = {xo for xo in allXos if xo not in excludedXos}
                xos.update(extraXos)
            
                ## Set dictionary entry
                xos = list(xos)
                if len(xos) > 0:
                    tmp[hid2] = xos

        ## Build dictionary of ssDNA crossovers
        ssXoDicts = [dict() for i in range(numHID)]
        for hid1 in range(numHID):
            tmp = ssXoDicts[hid1]
            for hid2 in range(numHID):
                xos       = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in ssXoList if h1 == hid1 and h2 == hid2}
                xos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in ssXoList if h2 == hid1 and h1 == hid2} )
                xos = sorted(list(xos), key = lambda x: (x[0],x[1]))
                ## Set dictionary entry
                if len(xos) > 0:
                    tmp[hid2] = xos

        ## Build helices 
        for hid in range(numHID):
            # print("Working on helix",hid)
            
            helixStrands = strand_list[hid]
            if helixStrands is None: 
                continue

            ## Build list of tuples containing (idx,length) of insertions/skips
            insertions = sorted( [(i[0],i[1].length()) for i in allInsertions[hid].items()],
                                 key=lambda x: x[0] )
            
            ## Build list of strand ends and list of mandatory node locations
            ends1,ends2 = self._helixStrandsToEnds(helixStrands)
            # xoZids = [x for x in xoDicts2[hid].keys()]

            ## Find crossovers for this helix
            xoZids = [x[1] for h0 in range(hid) if hid in xoDicts[h0] for x in xoDicts[h0][hid]]
            xoZids.extend([x[0] for hid2,xos in xoDicts[hid].items() for x in xos])
            xoZids.extend([x[1] for h0 in range(hid) if hid in ssXoDicts[h0] for x in ssXoDicts[h0][hid]])
            xoZids.extend([x[0] for hid2,xos in ssXoDicts[hid].items() for x in xos])
            reqNodeZids = sorted(list(set( ends1 + ends2 + xoZids ) ) )
            
            ## Build lists of which nt sites are occupied in the helix
            strandOccupancies = [ [x for i in range(0,len(e),2) 
                                   for x in range(e[i],e[i+1]+1)] 
                                  for e in (ends1,ends2) ]
            
           
            ## Build helix by adding nodes
            beadHelix = self.addHelix(part,hid)
            if hid in ():
                print("%d nodes:" %hid,reqNodeZids)
                print("orig xos:",[xo for xo in xover_list if xo[0] == hid or xo[3] == hid])
                print("xosZids:", sorted(xoZids) )
                print("strandOccupancy1:",strandOccupancies[0])
                print("strandOccupancy2:",strandOccupancies[1])

            prevNode = None
            for i in range( len(reqNodeZids)-1 ):
                zid1,zid2 = reqNodeZids[i:i+2]
                
                ## Check that there are nts between zid1 and zid2 before adding nodes
                zMid = int(0.5*(zid1+zid2))
                if zMid in strandOccupancies[0] and zMid in strandOccupancies[1]:
                    ## dsDNA
                    maxBpsPerNode = maxBpsPerDNode
                if zMid in strandOccupancies[0] or zMid in strandOccupancies[1]:
                    ## ssDNA
                    maxBpsPerNode = maxNtsPerSNode
                else:
                    continue

                numBps = zid2-zid1
                # if numBps < 2:
                #     print(hid,zid1,zid2)
                # assert(numBps >= 1)

                for ins_idx,length in insertions:
                    ## TODO: ensure placement of insertions is correct
                    ##   (e.g. are insertions at the ends handled correctly?)
                    if ins_idx < zid1:
                        continue
                    if ins_idx >= zid2:
                        break
                    numBps += length

                # if numBps = 0:
                #     print("WARNING: found stretch of DNA with 0 length; skipping")
                #     next

                nodesBetween = round( float(numBps-1)/maxBpsPerNode )
                if nodesBetween < 0: 
                    nodesBetween = 0
                bpsPerNode = float(numBps)/(nodesBetween+1)
                if bpsPerNode == 0: 
                    bpsPerNode = 0.1
                zidPerNode = float(zid2-zid1)/(nodesBetween+1)

                try:
                    if prevNode is None:
                        prevNode = beadHelix.addNode( zid1, strandOccupancies )

                    for i in range(nodesBetween):
                        node = beadHelix.addNode( zid1+(i+1)*zidPerNode, strandOccupancies )
                        self._connectNodes(prevNode, node, bpsPerNode)
                        prevNode = node

                    node = beadHelix.addNode( zid2, strandOccupancies )
                    self._connectNodes(prevNode, node, bpsPerNode)
                except:
                    print(hid,zid1,zid2,nodesBetween,bpsPerNode)
                    raise Exception("ERROR")

                prevNode = None
                if (int(floor(zid2+1)) in strandOccupancies[0]) or \
                   (int(floor(zid2+1)) in strandOccupancies[1]):
                    prevNode = node

        ## Add extra intrahelical bonds
        ## Add crossovers
        for entry in extraInterhelicalBondList:
            h1,f1,z1,h2,f2,z2 = entry
            if z1 > z2:
                n1 = self.helices[h1].nodes[z1]
                n2 = self.helices[h2].nodes[z2]
                try:
                    self._connectNodes(n1,n2,1)
                except:
                    self._connectNodes(n2,n1,1)
                    assert(True)
                    

        ## Add crossovers
        for hid1 in range(numHID):
            for hid2, xos in xoDicts[hid1].items():
                for xo in xos:
                    self._addCrossover(hid1,hid2,xo)

        ## Add ssDNA xovers    
        for hid1 in range(numHID):
            for hid2, xos in ssXoDicts[hid1].items():
                for xo in xos:
                    self._addSsCrossover(hid1,hid2,xo)


        return

    def _connectNodes(self, below, above, sep):
        below.addNodeAbove(above, sep)
        above.addNodeBelow(below, sep)
        
    def _addCrossover(self, hid1, hid2, xo):
        zid1, zid2, isFwd1, isFwd2 = xo
        node1 = self.helices[hid1].nodes[zid1]
        node2 = self.helices[hid2].nodes[zid2]

        ## TODO add polarity
        polarity = 0
        node1.addXover(node2, (isFwd1, isFwd2))
        node2.addXover(node1, (isFwd2, isFwd1))

    def _addSsCrossover(self, hid1, hid2, xo):
        zid1, zid2, isFwd1, isFwd2 = xo
        node1 = self.helices[hid1].nodes[zid1]
        node2 = self.helices[hid2].nodes[zid2]

        ## TODO add polarity
        polarity = 0
        node1.addSsXover(node2, isFwd1)
        node2.addSsXover(node1, isFwd2)

    def addModel(self, model):
        assert( isinstance(model, type(self)) )

        hidOffset = max( self.helices.keys() ) + 1
        # nidOffset = self.numParticles
        for hid,h in model:
            self.helices[hid+hidOffset] = h

        self.numParticles += model.numParticles

        self.buildOrderedParticlesList()
        self._setTypes()
        self._countParticleTypes()

cmaffeo2's avatar
cmaffeo2 committed
    def backmap(self, simplerModel, simplerModelCoords, 
                dsDnaHelixNeighborDist=50, dsDnaAllNeighborDist=30,
                ssDnaHelixNeighborDist=20, ssDnaAllNeighborDist=15):

        ## Assign each bead to a bead in simplerModel
        mapToSimplerModel = dict()
        cgWeight = dict()
        for hDict,cgHDict in zip(self,simplerModel):
            assert(hDict[0] == cgHDict[0])
            h,cgH = [x[1] for x in (hDict,cgHDict)] # get helix

            zIdxs = np.array( sorted([i for i,b in cgH]) )
            for i,b in h:
                cgi = np.searchsorted(zIdxs,i,side='left',sorter=None)
                cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)]
                mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)]

            for i,b in h.orientationNodes.items():
                cgi = np.searchsorted(zIdxs,i,side='left',sorter=None)
                cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)]
                mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)]
                
        ## Find new axis and position of each bead using neighborhood
        beads = [b for h in self for i,b in h[1].nodes.items()]

        ## Find transformation for each bead of simplerModel
        trans = dict()
        for b in list(set([b for i,bs in mapToSimplerModel.items() for b in bs])):
            helixCutoff = dsDnaHelixNeighborDist if b.type[0] in ('d','O') else ssDnaHelixNeighborDist
            allCutoff = dsDnaAllNeighborDist if  b.type[0] in ('d','O') else ssDnaAllNeighborDist

            ids = []
            attempts = 0
            while len(ids) <= 3:
                if attempts > 15: raise Exception("Too many attempts to find a neighborhood for backmaping bead %d" % b.idx)
                ids = simplerModel._getNeighborhoodIds(b, simplerModelCoords, helixCutoff, allCutoff)
                allCutoff *= 1.2
                attempts+=1
            posOld = np.array( [simplerModel.particles[i][0].initialPosition for i in ids] )
            posNew = np.array( [simplerModelCoords[i] for i in ids] )
            try:
                trans[b.idx] = minimizeRmsd( posOld, posNew )
            except:
                raise Error("Crapola")
                # print("ugly")

        ## Optionally smooth orientations
            
        ## Apply transformation to each bead of self
        beads.extend( [b for h in self for i,b in h[1].orientationNodes.items()] )
        for b in beads:
            cgb, = mapToSimplerModel[b.idx]
            cgi = cgb.idx
            r0 = simplerModel.particles[cgi][0].initialPosition
            R,c0,c1 = trans[cgi]
            b.position = (b.initialPosition - r0).dot(R) + simplerModelCoords[cgi]
            assert( np.all(np.isreal( b.position )) )
        

    def _getNeighborhoodIds(self, bead, coords, helixCutoff=50, allCutoff=np.sqrt(35)):
        i = bead.idx

        coords0 = self.initialCoords
        # print(coords0[i,:])
        coordsI = np.outer(coords0[i,:],np.ones([len(coords0),1])).T
        dr2Initial = np.sum((coords0 - coordsI)**2, axis=-1)
        dr2Final = np.sum((coords - coords[i,:])**2, axis=-1)
        
        ## Include all in same helix within 5 nm of bead after simulation        
        ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) )[0] )
        ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) * (dr2Initial < 100**2) )[0] )

        ## Include all within 3.5 nm both before AND after simulation
        ret.extend( list( np.where( (dr2Final < allCutoff**2) * (dr2Initial < allCutoff**2) )[0] ) )
        return sorted(list(set(ret)))

    # -------------------------- #
    # Methods for querying model #
    # -------------------------- #
    def _getIntrahelicalNodeSeries(self,seriesLen):
        nodeSeries = set() 
        for hid,hlx in self:
            for zid,n in hlx:
                nodeList,sepList = n.getNodesAbove(seriesLen-1, inclusive = True)
                if len(nodeList) == seriesLen:
                    nodeList = tuple(nodeList)
                    sepList = tuple(sepList)
                    nodeSeries.add( tuple((nodeList,sepList)) )
        return nodeSeries

    def _getIntrahelicalBonds(self):
        return self._getIntrahelicalNodeSeries(2)

    def _getIntrahelicalAngles(self):
        return self._getIntrahelicalNodeSeries(3)

    def _getOrientationBonds(self):
        nodeSeries = set() 
        for hid,hlx in self:
            for zid,n in hlx:
                if n.orientationNode is not None:
                    nodeSeries.add( tuple(((n.orientationNode,n),(0.2,))) )
        return nodeSeries

    def _getOrientationAngles(self):
        nodeSeries = set() 
        for hid,hlx in self:
            for zid,n in hlx:
                if n.orientationNode is not None and n.nodeAbove is not None:
                    nodeSeries.add( tuple(((n.orientationNode,n,n.nodeAbove),(0.2, n.nodeAboveSep))) )
        return nodeSeries

    def _getOrientationDihedrals(self):
        nodeSeries = set() 
        for hid,hlx in self:
            for zid,n1 in hlx:
                if n1.nodeAbove is not None:
                    n2 = n1.nodeAbove
                    if n1.orientationNode is not None and n2.orientationNode is not None:
                        nodeSeries.add( tuple(((n1.orientationNode,n1,n2,n2.orientationNode),
                                              (0.2, n1.nodeAboveSep, 0.2))) )
        return nodeSeries
                                    


    def _getCrossoverBonds(self):
        return { ((n, xo[0]), xo[1])
                 for hid,hlx in self
                 for zid,n in hlx for xo in n.xovers if n.idx < xo[0].idx }

    def _getSsCrossoverBonds(self):
        return { ((n, xo[0]), xo[1]) 
                 for hid,hlx in self
                 for zid,n in hlx for xo in n.ssXovers if n.idx < xo[0].idx }


    def _getCrossoverAnglesAndDihedrals(self):
        angles,dihedrals = [set(),set()]
        contiguousCrossovers = []

        for hid,hlx in self.helices.items():
            crossovers = []
            bpsBetween = 0
            for zid,n in hlx:
                ## Search for contiguous crossovers
                if n.nodeBelow is None or n.type[0] != "d":
                    ## Found ssDNA or a gap; reset search
                    if len(crossovers) > 0:
                        contiguousCrossovers.append(crossovers)
                    crossovers = []
                    bpsBetween = 0

                if n.nodeBelow is not None:
                    bpsBetween += n.nodeBelowSep
                if len(n.xovers) > 0:
                    crossovers.append( (n,bpsBetween) )

            if len(crossovers) > 0:
                contiguousCrossovers.append(crossovers)

        ## Process contiguousCrossovers
        for crossovers in contiguousCrossovers:
            for i in range(len(crossovers)-1):
                ni,bpi = crossovers[i]
                # for j in range(i+1,len(crossovers)):
                for j in range(i+1,i+2): # Just look at adjacent crossovers
                    assert(j == i+1)
                    nj,bpj = crossovers[j]
                    bpsBetween = bpj-bpi
                    if bpsBetween < 60:
                        for xo1 in ni.xovers:
                            for xo2 in nj.xovers:
                                assert( bpsBetween != 0 )
                                angles.add( ((xo1[0], ni, nj), bpsBetween) )
                                angles.add( ((ni, nj, xo2[0]), bpsBetween) )
                                dihedrals.add( ((xo1[0], ni, nj, xo2[0]), bpsBetween, xo1[1], xo2[1]) )
                    else:
                        break
        return angles, dihedrals
        

    def _removeIntrahelicalConnectionsAbove(self, cutoff):
        bonds = self._getIntrahelicalBonds()
        for b in bonds:
            n1,n2 = b[0]
            r2 = np.sum( (n1.position - n2.position)**2 )
            if r2 > cutoff**2:
                if n1.above == n2:
                    assert(n2.below == n1)
                    n1.above = None
                    n2.below = None
                elif n2.above == n1:
                    assert(n1.below == n2)
                    n1.below = None
                    n2.above = None
                else:
                    raise

    def _removeCrossoversAbove(self, cutoff):
        # bonds = self._getCrossoverBonds()
        for hid,hlx in self:
            for zid,n1 in hlx:
                newXovers = []
                for xo in n1.xovers:
                    n2 = xo[0]
                    r2 = np.sum( (n1.position - n2.position)**2 )
                    if r2 < cutoff**2:
                        newXovers.append(xo)
                n1.xovers = newXovers


    def _getBonds(self):
        bonds = self._getIntrahelicalBonds()
        bonds.update( self._getCrossoverBonds() )
        bonds.update( self._getSsCrossoverBonds() )
        return bonds


    # -------------------------- #
    # Methods for prinitng model #
    # -------------------------- #
    def writePdb(self, filename):
        with open(filename,'w') as fh:
            ## Write header
            fh.write("CRYST1    1.000    1.000    1.000  90.00  90.00  90.00 P 1           1\n")

            ## Write coordinates
            formatString = "ATOM  {:>5d} {:^4s}{:1s}{:3s} {:1s}  {:>5s}{:1s}{:8.3f}{:8.3f}{:8.3f}{:6.2f}{:6.2f}{:2s}{:2f}\n"
            for n,hid,zid in self.particles:
                ## http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM
                idx = n.idx
                name = n.type
                resname = name[:3]
                chain = "A"
                charge = 0
                occ = hid
                beta = zid
                x,y,z = [x for x in n.position]
                
                assert(idx < 100000)
                resid = "{:<4d}".format(idx)

                fh.write( formatString.format(
                    idx, name[:1], "", resname, chain, resid, "", x, y, z, occ, beta, "", charge ))
        return
        
    def writePsf(self, filename):
        with open(filename,'w') as fh:
            ## Write header
            fh.write("PSF NAMD\n\n") # create NAMD formatted psf
            
            ## ATOMS section
            idx=1
            for hid,hlx in self:
                for x in hlx:
                    idx += 1
                idx += len(hlx.orientationNodes)
                # for x in hlx.orientationNodes.items():
                #     idx += 1

            fh.write("{:>8d} !NATOM\n".format(idx-1))

            ## From vmd/plugins/molfile_plugin/src/psfplugin.c
            ## "%d %7s %10s %7s %7s %7s %f %f"
            formatString = "{idx:>8d} {segname:7s} {resid:<10s} {resname:7s}" + \
                           " {name:7s} {type:7s} {charge:f} {mass:f}\n"
            for n,hid,zid in self.particles:
                idx = n.idx + 1
                data = dict(
                    idx     = idx,
                    segname = "A",
                    resid   = "%d%c%c" % (idx," "," "), # TODO: work with large indeces
                    name    = n.type[:1],
                    resname = n.type[:3],
                    type    = n.type[:1],
                    charge  = 0,
                    mass    = 100,
                )
                fh.write(formatString.format( **data ))
            fh.write("\n")

            ## Write out bonds
            bonds = self._getBonds()
            fh.write("{:>8d} !NBOND\n".format(len(bonds)-1))
            counter = 0
            for n,seps in bonds:
                fh.write( "{:d} {:d} ".format(n[0].idx+1,n[1].idx+1) )
                counter += 1
                if counter == 3:
                    fh.write("\n")
                    counter = 0
            fh.write("\n")

        return

    def writeArbdFiles(self, prefix, numSteps=100000000, timestep=100e-6):
        ## TODO: save and reference directories and prefixes using member data
        d = "potentials"
        self._writeArbdCoordFile( prefix + ".coord.txt" )
        self._writeArbdBondFile(  prefix, directory = d )
        self._writeArbdAngleFile( prefix, directory = d )
        self._writeArbdDihedralFile( prefix, directory = d )
        self._writeArbdExclFile(  prefix + ".excludes.txt" )
        self._writeArbdPotentialFiles( prefix, directory = d )
        self._writeArbdConf( prefix, numSteps, timestep )
        
    def _writeArbdCoordFile(self, filename):
        with open(filename,'w') as fh:
            for n,hid,zid in self.particles:
                fh.write("%f %f %f\n" % tuple(x for x in n.position))
        
    def _writeArbdConf(self, prefix, numSteps=100000000, timestep=100e-6 ):
        ## TODO: raise exception if _writeArbdPotentialFiles has not been called
        filename = "%s.bd" % prefix
        with open(filename,'w') as fh:
            fh.write("""seed 1234
timestep %f