Skip to content
Snippets Groups Projects
multi_path_tracking_db.py 25.89 KiB
from guided_mrmp.planners.RRTStar import RRTStar

from guided_mrmp.utils import Roomba
from guided_mrmp.utils import Conflict, Robot, Env

import numpy as np
import matplotlib.pyplot as plt

from guided_mrmp.controllers.multi_path_tracking import MultiPathTracker
from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings

from guided_mrmp.utils.helpers import initialize_libraries

from guided_mrmp.controllers.place_grid import place_grid

class DiscreteRobot:
    def __init__(self, start, goal, label):
        self.start = start
        self.goal = goal
        self.current_position = start
        self.label = label

def plot_roomba(x, y, yaw, color, fill, radius):
    """

    Args:
        x ():
        y ():
        yaw ():
    """
    fig = plt.gcf()
    ax = fig.gca()
    if fill: alpha = .3
    else: alpha = 1
    circle = plt.Circle((x, y), radius, color=color, fill=fill, alpha=alpha)
    ax.add_patch(circle)

    # Plot direction marker
    dx = 1 * np.cos(yaw)
    dy = 1 * np.sin(yaw)
    ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.1, fc='r', ec='r')

class MultiPathTrackerDB(MultiPathTracker):
    def get_temp_starts_and_goals(self, state, grid_origin):
        # the temporary starts are the current positions of the robots snapped to the grid
        # based on the continuous space location of the robot, we find the cell in the grid that 
        # includes that continuous space location using the top left of the grid as a reference point

        import math
        temp_starts = []
        for r in range(self.num_robots):
            x, y, theta = state[r]
            cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
            cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
            temp_starts.append([cell_x, cell_y])


        # the temmporary goal is the point at the end of the robot's predicted traj
        temp_goals = []
        for r in range(self.num_robots):
            traj = self.ego_to_global_roomba(state[r], self.trajs[r])
            x = traj[0][-1]
            y = traj[1][-1]
            cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
            cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
            temp_goals.append([cell_x,cell_y])

        return temp_starts, temp_goals
    
    def create_discrete_robots(self, starts, goals):
        discrete_robots = []
        for i in range(len(starts)):
            start = starts[i]
            goal = goals[i]
            discrete_robots.append(DiscreteRobot(start, goal, i))
        return discrete_robots
      
    def get_discrete_solution(self, state, conflict, all_conflicts, grid, grid_origin):
        """
        Inputs:
            - conflict (list): list of robot idxs involved in the conflict
            - all_conflicts (list): list of all conflicts
            - grid (bool array): the obstacle map of grid that we placed
            - grid_origin (tuple): the top left corner of the grid in continuous space
        """

        starts, goals = self.get_temp_starts_and_goals(state, grid_origin)

        disc_robots = self.create_discrete_robots(starts, goals)

        disc_conflict = []
        for c in conflict:
            disc_conflict.append(disc_robots[c])

        disc_all_conflicts = []
        for c in all_conflicts:
            this_conflict = []
            for i in c:
                this_conflict.append(disc_robots[i])
            disc_all_conflicts.append(this_conflict)

        grid_solver = DiscreteResolver(disc_conflict, disc_robots, starts, goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
        subproblem = grid_solver.find_subproblem()

        if subproblem is None:
            print("Couldn't find a discrete subproblem")
            return None
        grid_solution = grid_solver.solve_subproblem(subproblem)
        return grid_solution
    
    def get_initial_guess(self, state, grid_solution, num_robots, N, cp_dist):

        # turn this solution into an initial guess 
        initial_guess_state = np.zeros((num_robots*3, N+1))
        # the initial guess for time is the length of the longest path in the solution
        initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])

        for i in range(num_robots):


            rough_points = np.array(grid_solution[i])
            points = []
            for point in rough_points:
                if point[0] == -1: break
                # append the point mutiplied by the cell size
                points.append([point[0]*self.cell_size, point[1]*self.cell_size])
            
            points = np.array(points)

            smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
 
            initial_guess_state[i*3, :] = smoothed_curve[:, 0]     # x
            initial_guess_state[i*3 + 1, :] = smoothed_curve[:, 1]    # y

            current_robot_x_pos = state[i][0]
            current_robot_y_pos = state[i][1]

            # translate the initial guess so that the first point is at (0,0)
            initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
            initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]

            # translate the initial guess so that the first point is at the current robot position
            initial_guess_state[i*3, :] += current_robot_x_pos
            initial_guess_state[i*3 + 1, :] += current_robot_y_pos 

            
            headings = calculate_headings(smoothed_curve)
            headings.append(headings[-1])

            initial_guess_state[i*3 + 2, :] = headings

        initial_guess_control = np.zeros((num_robots*2, N))

        dt = initial_guess_T / N
        change_in_position = []
        for i in range(num_robots):
            x = initial_guess_state[i*3, :]         # x
            y = initial_guess_state[i*3 + 1, :]    # y

            change_in_position = []
            for j in range(len(x)-1):
                pos1 = np.array([x[j], y[j]])
                pos2 = np.array([x[j+1], y[j+1]])

                change_in_position.append(np.linalg.norm(pos2 - pos1))

            velocity = np.array(change_in_position) / dt
            initial_guess_control[i*2, :] = velocity

            # omega is the difference between consecutive headings
            headings = initial_guess_state[i*3 + 2, :]
            omega = np.diff(headings)
            initial_guess_control[i*2 + 1, :] = omega

        return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}

    # def place_grid(self, state, robot_locations):
    #     """
    #     Given the locations of robots that need to be covered in continuous space, find 
    #     and place the grid. We don't need a very large grid to place subproblems, so 
    #     we will only place a grid of size self.grid_size x self.grid_size

    #     inputs:
    #         - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
    #     outputs:
    #         - grid (numpy array): The grid that we placed
    #         - top_left (tuple): The top left corner of the grid in continuous space
    #     """
    #     # Find the minimum and maximum x and y coordinates of the robot locations
    #     self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
    #     self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
    #     self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
    #     self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]

    #     # find the average x and y coordinates of the robot locations
    #     avg_x = sum([loc[0] for loc in robot_locations]) / len(robot_locations)
    #     avg_y = sum([loc[1] for loc in robot_locations]) / len(robot_locations)

    #     self.temp_avg_x = avg_x 
    #     self.temp_avg_y = avg_y

    #     # Calculate the top left corner of the grid
    #     # make it so that the grid is centered around the robots
    #     self.cell_size = self.radius*3
    #     self.grid_size = 5
    #     grid_origin = (avg_x - int(self.grid_size*self.cell_size/2), avg_y + int(self.grid_size*self.cell_size/2))

    #     # Check if, for every robot, the cell value of the start and the cell value 
    #     # of the goal are the same. If they are, then we can't find a discrete solution that 
    #     # will make progress.
    #     starts_equal = self.starts_equal(state, grid_origin)

    #     import copy
    #     original_top_left = copy.deepcopy(grid_origin)

    #     x_shift = [-5,5]
    #     y_shift = [-5,5]
    #     for x in np.arange(x_shift[0], x_shift[1],.5):
    #         y =0 
    #         grid_origin = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
    #         starts_equal = self.starts_equal(state, grid_origin)
    #         if not starts_equal: break

    #     if starts_equal:
    #         for y in np.arange(y_shift[0], y_shift[1],.5):
    #             x =0 
    #             grid_origin = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
    #             starts_equal = self.starts_equal(state, grid_origin)
    #             if not starts_equal: break

    #     if starts_equal:
    #         print("Some robots are in the same cell")
    #         return None

    #     grid = self.get_obstacle_map(grid_origin)
        
    #     return grid, grid_origin
    
    def get_obstacle_map(self, grid_origin):
        """
        Create a map of the environment with obstacles
        """
        # create a grid of size self.grid_size x self.grid_size
        grid = np.zeros((self.grid_size, self.grid_size))

        # check if there are any obstacles in any of the cells
        grid = np.zeros((self.grid_size, self.grid_size)) 
        for i in range(self.grid_size):
            for j in range(self.grid_size):
                x, y = self.get_grid_cell_location(i, j, grid_origin)
                for obs in []:
                # for obs in self.circle_obs:
                    if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2] + self.radius:
                        grid[j, i] = 1
                        break

        return grid
    
    def get_grid_cell(self, x, y, grid_origin):
        """
        Given a continuous space x and y, find the cell in the grid that includes that location
        """
        import math

        # find the closest grid cell that is not an obstacle
        cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
        cell_y = min(max(math.floor((y - grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)

        return cell_x, cell_y
    
    def get_grid_cell_location(self, cell_x, cell_y, grid_origin):
        """
        Given a cell in the grid, find the center of that cell in continuous space
        """
        x = grid_origin[0] + (cell_x + 0.5) * self.cell_size
        y = grid_origin[1] + (cell_y + 0.5) * self.cell_size
        return x, y
  
    
    def plot_trajs(self, state, traj1, traj2, radius):
        """
        Plot the trajectories of two robots.
        """
        import matplotlib.pyplot as plt
        import matplotlib.cm as cm

        # Plot the current state of each robot using the most recent values from
        # x_history, y_history, and h_history
        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))

        for i in range(self.num_robots):
            plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)

        # plot the goal of each robot with solid circle
        for i in range(self.num_robots):
            x, y, theta = self.paths[i][:, -1]
            plt.plot(x, y, 'o', color=colors[i])
            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
            plt.gca().add_artist(circle1)
      
        for i in range(traj1.shape[1]):
            circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
            plt.gca().add_artist(circle1)

        for i in range(traj2.shape[1]):
            circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
            plt.gca().add_artist(circle2)

        # set the size of the plot to be 10x10
        plt.xlim(self.x_range[0], self.x_range[1])
        plt.xlim(self.y_range[0], self.y_range[1])

        # force equal aspect ratio
        plt.gca().set_aspect('equal', adjustable='box')
        

        plt.show()

    def draw_grid(self, state, grid_origin, cell_size, grid_size):
        """
        inputs:
            - state (list): list of robot states
            - grid_origin (tuple): top left corner of the grid
        """

        # draw the whole environment with the local grid drawn on top
        import matplotlib.pyplot as plt
        import matplotlib.cm as cm

        # Plot the current state of each robot using the most recent values from
        # x_history, y_history, and h_history
        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))

        for i in range(self.num_robots):
            plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)

        # plot the goal of each robot with solid circle
        for i in range(self.num_robots):
            x, y, theta = self.paths[i][:, -1]
            plt.plot(x, y, 'o', color=colors[i])
            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
            plt.gca().add_artist(circle1)

        # draw the horizontal and vertical lines of the grid
        for i in range(grid_size + 1):
            # Draw vertical lines
            plt.plot([grid_origin[0] + i * cell_size, grid_origin[0] + i * cell_size], 
                        [grid_origin[1], grid_origin[1] + grid_size * cell_size], 'k-')
            # Draw horizontal lines
            plt.plot([grid_origin[0], grid_origin[0] + grid_size * cell_size], 
                        [grid_origin[1] + i * cell_size, grid_origin[1] + i * cell_size], 'k-')

        # draw the obstacles
        for obs in self.circle_obs:
            circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
            plt.gca().add_artist(circle)


        # plot the robots' continuous space subgoals
        for idx in range(self.num_robots):
        
            traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
            x = traj[0][-1]
            y = traj[1][-1]
            plt.plot(x, y, '^', color=colors[idx])
            circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
            plt.gca().add_artist(circle1)

        # set the size of the plot to be 10x10
        plt.xlim(self.x_range[0], self.x_range[1])
        plt.xlim(self.y_range[0], self.y_range[1])

        # force equal aspect ratio
        plt.gca().set_aspect('equal', adjustable='box')

        plt.show()

    def draw_grid_solution(self, initial_guess, state, grid_origin):
        
        # draw the whole environment with the local grid drawn on top
        import matplotlib.pyplot as plt
        import matplotlib.cm as cm

        # Plot the current state of each robot using the most recent values from
        # x_history, y_history, and h_history
        colors = cm.rainbow(np.linspace(0, 1, self.num_robots))

        for i in range(self.num_robots):
            plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)

        # plot the goal of each robot with solid circle
        for i in range(self.num_robots):
            x, y, theta = self.paths[i][:, -1]
            plt.plot(x, y, 'o', color=colors[i])
            circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
            plt.gca().add_artist(circle1)

        # draw the horizontal and vertical lines of the grid
        for i in range(self.grid_size + 1):
            # Draw vertical lines
            plt.plot([grid_origin[0] + i * self.cell_size, grid_origin[0] + i * self.cell_size], 
                        [grid_origin[1], grid_origin[1] + self.grid_size * self.cell_size], 'k-')
            # Draw horizontal lines
            plt.plot([grid_origin[0], grid_origin[0] + self.grid_size * self.cell_size], 
                        [grid_origin[1] +  i * self.cell_size, grid_origin[1] + i * self.cell_size], 'k-')

        # draw the obstacles
        for obs in self.circle_obs:
            circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
            plt.gca().add_artist(circle)

        for i in range(self.num_robots):
            x = initial_guess[i*3, :]
            y = initial_guess[i*3 + 1, :]
            plt.plot(x, y, 'x', color=colors[i])

        # plot the robots' continuous space subgoals
        for idx in range(self.num_robots):
        
            traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
            x = traj[0][-1]
            y = traj[1][-1]
            plt.plot(x, y, '^', color=colors[idx])
            circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
            plt.gca().add_artist(circle1)

        # set the size of the plot to be 10x10
        plt.xlim(self.x_range[0], self.x_range[1])
        plt.xlim(self.y_range[0], self.y_range[1])

        # force equal aspect ratio
        plt.gca().set_aspect('equal', adjustable='box')

        # title
        plt.title("Discrete Solution")

        plt.show()

    def starts_equal(self, state, grid_origin):
        """
        Check if the start cells of any two robots are the same
        """
        for i in range(self.num_robots):
            for j in range(i + 1, self.num_robots):
                start_i = state[i]
                start_j = state[j]

                cell_i = self.get_grid_cell(start_i[0], start_i[1], grid_origin)
                cell_j = self.get_grid_cell(start_j[0], start_j[1], grid_origin)

                if cell_i == cell_j:
                    return True
        return False
    
    def advance(self, state, show_plots=False):
        # 1. Get the reference trajectory for each robot
        targets = []
        for i in range(self.num_robots):
            ref, visited_guide_points = get_ref_trajectory(np.array(state[i]), 
                                                           np.array(self.paths[i]), 
                                                           self.target_v, 
                                                           self.T, 
                                                           self.DT, 
                                                           [])
            
            self.visited_points_on_guide_paths[i] = visited_guide_points

            targets.append(ref)
        self.trajs = targets

        # 2. Check if the targets of any two robots overlap
        all_conflicts = []
        for i in range(self.num_robots):
            traj1 = self.ego_to_global_roomba(state[i], targets[i])
            this_robot_conflicts = [i]
            for j in range(i + 1, self.num_robots):
                traj2 = self.ego_to_global_roomba(state[j], targets[j])
                if self.trajectories_overlap(traj1, traj2, self.radius):
                    # plot the trajectories of the robots that are in conflict
                    if show_plots: self.plot_trajs(state, traj1, traj2, self.radius)
                    this_robot_conflicts.append(j)
            if len(this_robot_conflicts) > 1:
                all_conflicts.append(this_robot_conflicts)

        for c in all_conflicts:
            # 3. If they do collide, then reroute the reference trajectories of these robots

            # Get the robots involved in the conflict
            robots = c
            robot_positions = []
            for i in range(self.num_robots):
                robot_positions.append(state[i][:2])

            # Put down a local grid
            self.cell_size = self.radius*3
            self.grid_size = 5
            grid_origin, centers = place_grid(robot_positions, cell_size=self.radius*3)
            grid_obstacle_map = self.get_obstacle_map(grid_origin)
            if show_plots: self.draw_grid(state, grid_origin, self.cell_size, 5)

            # Solve a discrete version of the problem 
            # Find a subproblem and solve it
            grid_solution = self.get_discrete_solution(state, c, all_conflicts, grid_obstacle_map, grid_origin)

            

            if grid_solution:
                # if we found a grid solution, we can use it to reroute the robots
                initial_guess = self.get_initial_guess(state, grid_solution, self.num_robots, 20, .5)
                initial_guess_state = initial_guess['X']

                if show_plots: self.draw_grid_solution(initial_guess_state, state, grid_origin)
                
                # for each robot in conflict, reroute its reference trajectory to match the grid solution
                num_robots_in_conflict = len(c)
                import copy
                old_paths = copy.deepcopy(self.paths)

                self.paths = []
                for i in range(num_robots_in_conflict):
                    new_ref = initial_guess_state[i*3:i*3+3, :]

                    # plan from the last point of the ref path to the robot's goal
                    # plan an RRT path from the current state to the goal

                    x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
                    x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])

                    rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
                    rrtstarpath2,tree = rrtstar2.run()
                    rrtstarpath2 = list(reversed(rrtstarpath2))
                    xs = new_ref[0, :].tolist()
                    ys = new_ref[1, :].tolist()

                    for node in rrtstarpath2:
                        xs.append(node[0])
                        ys.append(node[1])

                    wp = [xs,ys]

                    # Path from waypoint interpolation
                    self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))

                targets = []
                for i in range(self.num_robots):
                    ref, visited_guide_points = get_ref_trajectory(np.array(state[i]), 
                                                           np.array(self.paths[i]), 
                                                           self.target_v, 
                                                           self.T, 
                                                           self.DT, 
                                                           self.visited_points_on_guide_paths[i])
            
                    self.visited_points_on_guide_paths[i] = visited_guide_points
                    
                    targets.append(ref)
                self.trajs = targets

            if grid_solution is None:
                # if there isnt a grid solution, the most likely scenario is that the robots 
                # are not close enough together to place down a subproblem
                # in this case, we just allow the robts to continue on their paths and resolve 
                # the conflict later
                print("No grid solution found, proceeding with the current paths")

        # dynamycs w.r.t robot frame
        curr_states = np.zeros((self.num_robots, 3))
        x_mpc, u_mpc = self.mpc.step(
            curr_states,
            targets,
            self.control
        )
        
        # only the first one is used to advance the simulation
        self.control = []
        for i in range(self.num_robots):
            self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])

        return x_mpc, self.control


def main():
    import os
    import numpy as np
    import random

    # load the settings
    file_path = "settings_files/settings.yaml"
    import yaml
    with open(file_path, 'r') as file:
        settings = yaml.safe_load(file)

    seed = 1123
    print(f"***Setting Python Seed {seed}***")
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    random.seed(seed)


    initial_pos_1 = np.array([6.0, 2.0, 5.2])
    target_vocity = 3.0 # m/s
    T = .5  # Prediction Horizon [s]
    DT = 0.1  # discretization step [s]


    x_start = (6, 2)  # Starting node
    x_goal = (6.5, 8)  # Goal node


    env = Env([0,10], [0,10], [], [])

    dynamics = Roomba(settings)

    rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
    rrtstarpath1,tree = rrtstar1.run()
    rrtstarpath1 = list(reversed(rrtstarpath1))
    xs = []
    ys = []
    for node in rrtstarpath1:
        print(node)
        print()
        xs.append(node[0])
        ys.append(node[1])

    wp_1 = [xs,ys]

    start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
    initial_pos_1 = [initial_pos_1[0], initial_pos_1[1], start_heading]
        

    print(f"wp_1 = {wp_1}")
    # sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
    # x1,y1,h1 = sim.run(show_plots=False)
    # path1 = sim.path
    
    initial_pos_2 = np.array([6.0, 8.0, 1.5])
    target_vocity = 3.0 # m/s


    x_start = (6, 8)  # Starting node
    x_goal = (6.5, 2)  # Goal node
    rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
    rrtstarpath2,tree = rrtstar2.run()
    rrtstarpath2 = list(reversed(rrtstarpath2))
    xs = []
    ys = []
    for node in rrtstarpath2:
        xs.append(node[0])
        ys.append(node[1])

    wp_2 = [xs,ys]

    start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
    initial_pos_2 = [initial_pos_2[0], initial_pos_2[1], start_heading]
        

    lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()    

    sim = MultiPathTrackerDB(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
    xs, ys, hs = sim.run(show_plots=False)
    paths = sim.paths

    print(f"path length here = {len(paths)}")

    # plot(xs, ys, hs, paths, [rrtstar1.sampled_vertices, rrtstar2.sampled_vertices],2)

    # plot_sim(xs, ys, hs, paths)

if __name__ == "__main__":
    main()