Newer
Older
from guided_mrmp.planners.RRTStar import RRTStar
from guided_mrmp.utils import Roomba
from guided_mrmp.utils import Conflict, Robot, Env
import numpy as np
import matplotlib.pyplot as plt
from guided_mrmp.controllers.multi_path_tracking import MultiPathTracker
from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
from guided_mrmp.utils.helpers import initialize_libraries
from guided_mrmp.controllers.place_grid import place_grid
class DiscreteRobot:
def __init__(self, start, goal, label):
self.start = start
self.goal = goal
self.current_position = start
self.label = label
def plot_roomba(x, y, yaw, color, fill, radius):
"""
Args:
x ():
y ():
yaw ():
"""
fig = plt.gcf()
ax = fig.gca()
if fill: alpha = .3
else: alpha = 1
circle = plt.Circle((x, y), radius, color=color, fill=fill, alpha=alpha)
ax.add_patch(circle)
# Plot direction marker
dx = 1 * np.cos(yaw)
dy = 1 * np.sin(yaw)
ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.1, fc='r', ec='r')
class MultiPathTrackerDB(MultiPathTracker):
def get_temp_starts_and_goals(self, state, grid_origin):
# the temporary starts are the current positions of the robots snapped to the grid
# based on the continuous space location of the robot, we find the cell in the grid that
# includes that continuous space location using the top left of the grid as a reference point
import math
temp_starts = []
for r in range(self.num_robots):
x, y, theta = state[r]
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
temp_starts.append([cell_x, cell_y])
# the temmporary goal is the point at the end of the robot's predicted traj
temp_goals = []
for r in range(self.num_robots):
traj = self.ego_to_global_roomba(state[r], self.trajs[r])
x = traj[0][-1]
y = traj[1][-1]
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
temp_goals.append([cell_x,cell_y])
return temp_starts, temp_goals
def create_discrete_robots(self, starts, goals):
discrete_robots = []
for i in range(len(starts)):
start = starts[i]
goal = goals[i]
discrete_robots.append(DiscreteRobot(start, goal, i))
return discrete_robots
def get_discrete_solution(self, state, conflict, all_conflicts, grid, grid_origin):
"""
Inputs:
- conflict (list): list of robot idxs involved in the conflict
- all_conflicts (list): list of all conflicts
- grid (bool array): the obstacle map of grid that we placed
- grid_origin (tuple): the top left corner of the grid in continuous space
"""
starts, goals = self.get_temp_starts_and_goals(state, grid_origin)
disc_robots = self.create_discrete_robots(starts, goals)
disc_conflict = []
for c in conflict:
disc_conflict.append(disc_robots[c])
disc_all_conflicts = []
for c in all_conflicts:
this_conflict = []
for i in c:
this_conflict.append(disc_robots[i])
disc_all_conflicts.append(this_conflict)
grid_solver = DiscreteResolver(disc_conflict, disc_robots, starts, goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
subproblem = grid_solver.find_subproblem()
if subproblem is None:
print("Couldn't find a discrete subproblem")
return None
grid_solution = grid_solver.solve_subproblem(subproblem)
return grid_solution
def get_initial_guess(self, state, grid_solution, num_robots, N, cp_dist):
# turn this solution into an initial guess
initial_guess_state = np.zeros((num_robots*3, N+1))
# the initial guess for time is the length of the longest path in the solution
initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])
for i in range(num_robots):
rough_points = np.array(grid_solution[i])
points = []
for point in rough_points:
if point[0] == -1: break
# append the point mutiplied by the cell size
points.append([point[0]*self.cell_size, point[1]*self.cell_size])
points = np.array(points)
smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
initial_guess_state[i*3, :] = smoothed_curve[:, 0] # x
initial_guess_state[i*3 + 1, :] = smoothed_curve[:, 1] # y
current_robot_x_pos = state[i][0]
current_robot_y_pos = state[i][1]
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# translate the initial guess so that the first point is at (0,0)
initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]
# translate the initial guess so that the first point is at the current robot position
initial_guess_state[i*3, :] += current_robot_x_pos
initial_guess_state[i*3 + 1, :] += current_robot_y_pos
headings = calculate_headings(smoothed_curve)
headings.append(headings[-1])
initial_guess_state[i*3 + 2, :] = headings
initial_guess_control = np.zeros((num_robots*2, N))
dt = initial_guess_T / N
change_in_position = []
for i in range(num_robots):
x = initial_guess_state[i*3, :] # x
y = initial_guess_state[i*3 + 1, :] # y
change_in_position = []
for j in range(len(x)-1):
pos1 = np.array([x[j], y[j]])
pos2 = np.array([x[j+1], y[j+1]])
change_in_position.append(np.linalg.norm(pos2 - pos1))
velocity = np.array(change_in_position) / dt
initial_guess_control[i*2, :] = velocity
# omega is the difference between consecutive headings
headings = initial_guess_state[i*3 + 2, :]
omega = np.diff(headings)
initial_guess_control[i*2 + 1, :] = omega
return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# def place_grid(self, state, robot_locations):
# """
# Given the locations of robots that need to be covered in continuous space, find
# and place the grid. We don't need a very large grid to place subproblems, so
# we will only place a grid of size self.grid_size x self.grid_size
# inputs:
# - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
# outputs:
# - grid (numpy array): The grid that we placed
# - top_left (tuple): The top left corner of the grid in continuous space
# """
# # Find the minimum and maximum x and y coordinates of the robot locations
# self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
# self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
# self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
# self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]
# # find the average x and y coordinates of the robot locations
# avg_x = sum([loc[0] for loc in robot_locations]) / len(robot_locations)
# avg_y = sum([loc[1] for loc in robot_locations]) / len(robot_locations)
# self.temp_avg_x = avg_x
# self.temp_avg_y = avg_y
# # Calculate the top left corner of the grid
# # make it so that the grid is centered around the robots
# self.cell_size = self.radius*3
# self.grid_size = 5
# grid_origin = (avg_x - int(self.grid_size*self.cell_size/2), avg_y + int(self.grid_size*self.cell_size/2))
# # Check if, for every robot, the cell value of the start and the cell value
# # of the goal are the same. If they are, then we can't find a discrete solution that
# # will make progress.
# starts_equal = self.starts_equal(state, grid_origin)
# import copy
# original_top_left = copy.deepcopy(grid_origin)
# x_shift = [-5,5]
# y_shift = [-5,5]
# for x in np.arange(x_shift[0], x_shift[1],.5):
# y =0
# grid_origin = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
# starts_equal = self.starts_equal(state, grid_origin)
# if not starts_equal: break
# if starts_equal:
# for y in np.arange(y_shift[0], y_shift[1],.5):
# x =0
# grid_origin = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
# starts_equal = self.starts_equal(state, grid_origin)
# if not starts_equal: break
# if starts_equal:
# print("Some robots are in the same cell")
# return None
# grid = self.get_obstacle_map(grid_origin)
def get_obstacle_map(self, grid_origin):
"""
Create a map of the environment with obstacles
"""
# create a grid of size self.grid_size x self.grid_size
grid = np.zeros((self.grid_size, self.grid_size))
# check if there are any obstacles in any of the cells
grid = np.zeros((self.grid_size, self.grid_size))
for i in range(self.grid_size):
for j in range(self.grid_size):
x, y = self.get_grid_cell_location(i, j, grid_origin)
for obs in []:
# for obs in self.circle_obs:
if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2] + self.radius:
grid[j, i] = 1
break
return grid
def get_grid_cell(self, x, y, grid_origin):
"""
Given a continuous space x and y, find the cell in the grid that includes that location
"""
import math
# find the closest grid cell that is not an obstacle
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y - grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
return cell_x, cell_y
def get_grid_cell_location(self, cell_x, cell_y, grid_origin):
"""
Given a cell in the grid, find the center of that cell in continuous space
"""
x = grid_origin[0] + (cell_x + 0.5) * self.cell_size
y = grid_origin[1] + (cell_y + 0.5) * self.cell_size
return x, y
def plot_trajs(self, state, traj1, traj2, radius):
"""
Plot the trajectories of two robots.
"""
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
for i in range(traj1.shape[1]):
circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle1)
for i in range(traj2.shape[1]):
circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle2)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def draw_grid(self, state, grid_origin, cell_size, grid_size):
"""
inputs:
- state (list): list of robot states
- grid_origin (tuple): top left corner of the grid
"""
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
# Draw vertical lines
plt.plot([grid_origin[0] + i * cell_size, grid_origin[0] + i * cell_size],
[grid_origin[1], grid_origin[1] + grid_size * cell_size], 'k-')
# Draw horizontal lines
plt.plot([grid_origin[0], grid_origin[0] + grid_size * cell_size],
[grid_origin[1] + i * cell_size, grid_origin[1] + i * cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def draw_grid_solution(self, initial_guess, state, grid_origin):
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
for i in range(self.grid_size + 1):
# Draw vertical lines
plt.plot([grid_origin[0] + i * self.cell_size, grid_origin[0] + i * self.cell_size],
[grid_origin[1], grid_origin[1] + self.grid_size * self.cell_size], 'k-')
# Draw horizontal lines
plt.plot([grid_origin[0], grid_origin[0] + self.grid_size * self.cell_size],
[grid_origin[1] + i * self.cell_size, grid_origin[1] + i * self.cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
for i in range(self.num_robots):
x = initial_guess[i*3, :]
y = initial_guess[i*3 + 1, :]
plt.plot(x, y, 'x', color=colors[i])
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
# title
plt.title("Discrete Solution")
plt.show()
def starts_equal(self, state, grid_origin):
Check if the start cells of any two robots are the same
for i in range(self.num_robots):
for j in range(i + 1, self.num_robots):
start_i = state[i]
start_j = state[j]
cell_i = self.get_grid_cell(start_i[0], start_i[1], grid_origin)
cell_j = self.get_grid_cell(start_j[0], start_j[1], grid_origin)
if cell_i == cell_j:
return True
return False
def advance(self, state, show_plots=False):
# 1. Get the reference trajectory for each robot
targets = []
for i in range(self.num_robots):
ref, visited_guide_points = get_ref_trajectory(np.array(state[i]),
np.array(self.paths[i]),
self.target_v,
self.T,
self.DT,
self.visited_points_on_guide_paths[i] = visited_guide_points
targets.append(ref)
self.trajs = targets
# 2. Check if the targets of any two robots overlap
all_conflicts = []
for i in range(self.num_robots):
traj1 = self.ego_to_global_roomba(state[i], targets[i])
this_robot_conflicts = [i]
for j in range(i + 1, self.num_robots):
traj2 = self.ego_to_global_roomba(state[j], targets[j])
if self.trajectories_overlap(traj1, traj2, self.radius):
# plot the trajectories of the robots that are in conflict
if show_plots: self.plot_trajs(state, traj1, traj2, self.radius)
this_robot_conflicts.append(j)
if len(this_robot_conflicts) > 1:
all_conflicts.append(this_robot_conflicts)
for c in all_conflicts:
# 3. If they do collide, then reroute the reference trajectories of these robots
# Get the robots involved in the conflict
robots = c
for i in range(self.num_robots):
# Put down a local grid
self.cell_size = self.radius*3
self.grid_size = 5
grid_origin, centers = place_grid(robot_positions, cell_size=self.radius*3)
grid_obstacle_map = self.get_obstacle_map(grid_origin)
if show_plots: self.draw_grid(state, grid_origin, self.cell_size, 5)
# Solve a discrete version of the problem
# Find a subproblem and solve it
grid_solution = self.get_discrete_solution(state, c, all_conflicts, grid_obstacle_map, grid_origin)
if grid_solution:
# if we found a grid solution, we can use it to reroute the robots
initial_guess = self.get_initial_guess(state, grid_solution, self.num_robots, 20, .5)
initial_guess_state = initial_guess['X']
if show_plots: self.draw_grid_solution(initial_guess_state, state, grid_origin)
# for each robot in conflict, reroute its reference trajectory to match the grid solution
num_robots_in_conflict = len(c)
import copy
old_paths = copy.deepcopy(self.paths)
self.paths = []
for i in range(num_robots_in_conflict):
new_ref = initial_guess_state[i*3:i*3+3, :]
# plan from the last point of the ref path to the robot's goal
# plan an RRT path from the current state to the goal
x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = new_ref[0, :].tolist()
ys = new_ref[1, :].tolist()
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp = [xs,ys]
# Path from waypoint interpolation
self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
targets = []
for i in range(self.num_robots):
ref, visited_guide_points = get_ref_trajectory(np.array(state[i]),
np.array(self.paths[i]),
self.target_v,
self.T,
self.DT,
self.visited_points_on_guide_paths[i])
self.visited_points_on_guide_paths[i] = visited_guide_points
targets.append(ref)
self.trajs = targets
if grid_solution is None:
# if there isnt a grid solution, the most likely scenario is that the robots
# are not close enough together to place down a subproblem
# in this case, we just allow the robts to continue on their paths and resolve
# the conflict later
print("No grid solution found, proceeding with the current paths")
# dynamycs w.r.t robot frame
curr_states = np.zeros((self.num_robots, 3))
x_mpc, u_mpc = self.mpc.step(
curr_states,
targets,
self.control
)
# only the first one is used to advance the simulation
self.control = []
for i in range(self.num_robots):
self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
return x_mpc, self.control
def main():
import os
import numpy as np
import random
# load the settings
file_path = "settings_files/settings.yaml"
import yaml
with open(file_path, 'r') as file:
settings = yaml.safe_load(file)
seed = 1123
print(f"***Setting Python Seed {seed}***")
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
initial_pos_1 = np.array([6.0, 2.0, 5.2])
target_vocity = 3.0 # m/s
T = .5 # Prediction Horizon [s]
DT = 0.1 # discretization step [s]
x_start = (6, 2) # Starting node
x_goal = (6.5, 8) # Goal node
env = Env([0,10], [0,10], [], [])
dynamics = Roomba(settings)
rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath1,tree = rrtstar1.run()
rrtstarpath1 = list(reversed(rrtstarpath1))
xs = []
ys = []
for node in rrtstarpath1:
print(node)
print()
xs.append(node[0])
ys.append(node[1])
wp_1 = [xs,ys]
start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
initial_pos_1 = [initial_pos_1[0], initial_pos_1[1], start_heading]
print(f"wp_1 = {wp_1}")
# sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
# x1,y1,h1 = sim.run(show_plots=False)
# path1 = sim.path
initial_pos_2 = np.array([6.0, 8.0, 1.5])
target_vocity = 3.0 # m/s
x_start = (6, 8) # Starting node
x_goal = (6.5, 2) # Goal node
rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = []
ys = []
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp_2 = [xs,ys]
start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
initial_pos_2 = [initial_pos_2[0], initial_pos_2[1], start_heading]
lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()
sim = MultiPathTrackerDB(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
xs, ys, hs = sim.run(show_plots=False)
paths = sim.paths
print(f"path length here = {len(paths)}")
# plot(xs, ys, hs, paths, [rrtstar1.sampled_vertices, rrtstar2.sampled_vertices],2)
# plot_sim(xs, ys, hs, paths)
if __name__ == "__main__":
main()