Skip to content
Snippets Groups Projects
main.py 4.24 KiB
Newer Older
  • Learn to ignore specific revisions
  • import yaml
    
    import os
    import random
    import numpy as np
    import pygame
    
    rachelmoan's avatar
    rachelmoan committed
    from guided_mrmp.utils import Env, Roomba, Robot, create_random_starts_and_goals
    
    from guided_mrmp.planners import RRT
    from guided_mrmp.planners import RRTStar
    
    from guided_mrmp.planners.multirobot.db_guided_mrmp import GuidedMRMP
    from guided_mrmp.simulator import Simulator
    
    rachelmoan's avatar
    rachelmoan committed
    class_names_dist = {
        'Roomba': Roomba,
        # 'RRT': RRT(),
        # 'RRTStar': RRTStar(),
        }
    
    # robot = class_names_dist[config["robot_naame"]](**config["robot_params"])
    
    
    def load_settings(file_path):
        with open(file_path, 'r') as file:
            settings = yaml.safe_load(file)
        return settings
    
    
    def set_python_seed(seed):
        print(f"***Setting Python Seed {seed}***")
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        random.seed(seed)
    
    def plan_decoupled_path(env, start, goal, solver="RRT*", 
                            step_length=20, goal_sample_rate=.5, num_samples=500000, r=80):
        """
        Plan decoupled path from a given start to a given goal, using a single-agent solver.
    
        inputs:
            - start (tuple): (x,y) location of start 
            - goal (tuple): (x,y) location of goal 
            - solver (string): Name of single-agent solver to be used
            - step_length (float): 
            - goal_sample_rate (float):
            - num_samples (int):
            - r (float):
        output:
            - path (list): list of nodes in path 
        """
        if solver == "RRT":
            rrt = RRT(env, start, goal, step_length, goal_sample_rate, num_samples)
            path = rrt.run()
        elif solver == "RRT*":
            rrtstar = RRTStar(env, start, goal, step_length, goal_sample_rate, num_samples,r)
            path = rrtstar.run()
        else:
            print(f"Solver {solver} is not yet implemented. Choose something else.")
            return None
    
        return list(reversed(path))
    
    
    def initialize_robots(starts, goals, dynamics_models, radii, target_v, env):
    
        """
        NOTE This function (and the plan_decoupled_paths function could just exist as 
        helper functions elsewhere to make this class easier to understand)
        """
        print("initializing robots")
    
        robots = []
        RADIUS = 10
    
        colors = [list(np.random.choice(range(256), size=3)) for i in range(len(starts))]
    
    
        for i, (start, goal, dynamics_model, radius, color) in enumerate(zip(starts, goals, dynamics_models, radii, colors)):
    
            print(f"planning path for robot {i} from {start} to {goal} ")
            rrtpath = plan_decoupled_path(env, (start[0],start[1]), (goal[0],goal[1]))
            xs = []
            ys = []
            for node in rrtpath:
                xs.append(node[0])
                ys.append(node[1])
    
            waypoints = [xs,ys]
    
            print(f"waypoints = {waypoints}")
            
    
            r = Robot(i,color,radius,start,goal,dynamics_model,target_v,rrtpath,waypoints)
    
            robots.append(r)
    
        return robots
    
    
    if __name__ == "__main__":
    
    rachelmoan's avatar
    rachelmoan committed
        # Load the settings
    
        settings = load_settings("settings.yaml")
    
    
    rachelmoan's avatar
    rachelmoan committed
        set_python_seed(42)
    
        # Load and create the environment
    
        circle_obstacles = settings['environment']['circle_obstacles']
        rectangle_obstacles = settings['environment']['rectangle_obstacles']
    
    rachelmoan's avatar
    rachelmoan committed
        x_range = settings['environment']['x_range']
        y_range = settings['environment']['y_range']
        env = Env(x_range, y_range, circle_obstacles, rectangle_obstacles)
    
    rachelmoan's avatar
    rachelmoan committed
        # Load the dynamics models
        dynamics_models_st = settings['dynamics_models']
    
    rachelmoan's avatar
    rachelmoan committed
        dynamics_models = []
        for model in dynamics_models_st:
            dynamics_models.append(class_names_dist[model]())
    
    rachelmoan's avatar
    rachelmoan committed
        # Load and create the robots
        robot_starts = settings['robot_starts']
        robot_goals = settings['robot_goals']
    
        robot_radii = settings['robot_radii']
        target_v = settings['target_v']
    
    rachelmoan's avatar
    rachelmoan committed
        if robot_starts is None:
            starts, goals = create_random_starts_and_goals(env, 4)
    
        robots = initialize_robots(robot_starts, robot_goals, dynamics_models, robot_radii, target_v, env)
    
        # Create the Guided MRMP policy
    
    rachelmoan's avatar
    rachelmoan committed
        T = settings['prediction_horizon']
        DT = settings['discretization_step']
        policy = GuidedMRMP(env, robots, dynamics_models, T, DT, settings)
    
        # Create the simulator
        pygame.init()
    
    rachelmoan's avatar
    rachelmoan committed
        screen = pygame.display.set_mode((x_range[1], y_range[1])) 
        sim = Simulator(robots, dynamics_models, env, policy, settings)
    
        # Run the simulation