import yaml import os import random import numpy as np import pygame from guided_mrmp.utils import Env, Roomba, Robot, create_random_starts_and_goals from guided_mrmp.planners import RRT from guided_mrmp.planners import RRTStar from guided_mrmp.planners.multirobot.db_guided_mrmp import GuidedMRMP from guided_mrmp.simulator import Simulator class_names_dist = { 'Roomba': Roomba, # 'RRT': RRT(), # 'RRTStar': RRTStar(), } # robot = class_names_dist[config["robot_naame"]](**config["robot_params"]) def load_settings(file_path): with open(file_path, 'r') as file: settings = yaml.safe_load(file) return settings def set_python_seed(seed): print(f"***Setting Python Seed {seed}***") os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) random.seed(seed) def plan_decoupled_path(env, start, goal, solver="RRT*", step_length=20, goal_sample_rate=.5, num_samples=500000, r=80): """ Plan decoupled path from a given start to a given goal, using a single-agent solver. inputs: - start (tuple): (x,y) location of start - goal (tuple): (x,y) location of goal - solver (string): Name of single-agent solver to be used - step_length (float): - goal_sample_rate (float): - num_samples (int): - r (float): output: - path (list): list of nodes in path """ if solver == "RRT": rrt = RRT(env, start, goal, step_length, goal_sample_rate, num_samples) path = rrt.run() elif solver == "RRT*": rrtstar = RRTStar(env, start, goal, step_length, goal_sample_rate, num_samples,r) path = rrtstar.run() else: print(f"Solver {solver} is not yet implemented. Choose something else.") return None return list(reversed(path)) def initialize_robots(starts, goals, dynamics_models, radii, target_v, env): """ NOTE This function (and the plan_decoupled_paths function could just exist as helper functions elsewhere to make this class easier to understand) """ print("initializing robots") robots = [] RADIUS = 10 colors = [list(np.random.choice(range(256), size=3)) for i in range(len(starts))] for i, (start, goal, dynamics_model, radius, color) in enumerate(zip(starts, goals, dynamics_models, radii, colors)): print(f"planning path for robot {i} from {start} to {goal} ") rrtpath = plan_decoupled_path(env, (start[0],start[1]), (goal[0],goal[1])) xs = [] ys = [] for node in rrtpath: xs.append(node[0]) ys.append(node[1]) waypoints = [xs,ys] print(f"waypoints = {waypoints}") r = Robot(i,color,radius,start,goal,dynamics_model,target_v,rrtpath,waypoints) robots.append(r) return robots if __name__ == "__main__": # Load the settings settings = load_settings("settings.yaml") set_python_seed(42) # Load and create the environment circle_obstacles = settings['environment']['circle_obstacles'] rectangle_obstacles = settings['environment']['rectangle_obstacles'] x_range = settings['environment']['x_range'] y_range = settings['environment']['y_range'] env = Env(x_range, y_range, circle_obstacles, rectangle_obstacles) # Load the dynamics models dynamics_models_st = settings['dynamics_models'] dynamics_models = [] for model in dynamics_models_st: dynamics_models.append(class_names_dist[model]()) # Load and create the robots robot_starts = settings['robot_starts'] robot_goals = settings['robot_goals'] robot_radii = settings['robot_radii'] target_v = settings['target_v'] if robot_starts is None: starts, goals = create_random_starts_and_goals(env, 4) robots = initialize_robots(robot_starts, robot_goals, dynamics_models, robot_radii, target_v, env) # Create the Guided MRMP policy T = settings['prediction_horizon'] DT = settings['discretization_step'] policy = GuidedMRMP(env, robots, dynamics_models, T, DT, settings) # Create the simulator pygame.init() screen = pygame.display.set_mode((x_range[1], y_range[1])) sim = Simulator(robots, dynamics_models, env, policy, settings) # Run the simulation sim.run(screen)