Skip to content
Snippets Groups Projects
place_grid.py 21.5 KiB
Newer Older
import cvxpy as cp
import numpy as np
def place_grid(robot_locations, cell_size, grid_size=5, subgoals=[], obstacles=[]):
    """
        Place a grid to cover robot locations with alignment to centers.

        inputs:
            - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
            - cell_size (float): the width of each grid cell in continuous space
            - grid_size (tuple): width of the grid in cells
            - subgoals (list): locations of subgoals for each robot
            - obstacles (list): locations of circular ('c') and rectangular ('r') obstacles [['c',x,y,r], ['c',x,y,r], ['r',x,y,w,h], ['r',x,y,w,h], ...]
        outputs:
            - origin (tuple): bottom-left corner of the grid in continuous space
            - cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
    """
    robot_locations = np.array(robot_locations)
    subgoals = np.array(subgoals)
    num_robots = len(robot_locations)
    num_obst = len(obstacles)
    M_ind = 10 * grid_size # Big M relative to grid indices
    M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
    
    # Decision variable: Bottom-left corner of the grid in continuous space
    bottom_left = cp.Variable(2, name='origin')
    
    # Decision variable: Integer grid indices for each robot
    grid_indices = cp.Variable((num_robots, 2), integer=True, name='grid_indices')
    
    # Calculate cell centers for each robot based on grid indices
    # Reshape origin to (1, 2) for broadcasting
    cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_indices * cell_size + cell_size / 2
    # Existence of overlap between each obstacle and each robot
    if num_obst > 0:
        overlaps = cp.Variable((num_obst, num_robots), boolean=True)
    # Objective: Minimize the sum of squared distances and number of robot cell / obstacle overlaps
    if num_obst > 0:
        alpha = 1
        cost = cp.sum_squares(robot_locations - cell_centers) + alpha * cp.sum(overlaps)
    else:
        cost = cp.sum_squares(robot_locations - cell_centers)
    
    # Constraints
    constraints = []
    
    # Grid indices must be non-negative
    constraints.append(grid_indices >= 0)
    
    # Grid indices must fit within grid bounds
    constraints.append(grid_indices <= grid_size - 1)
    
    # No two robots can share a cell
    # Use Big M method to ensure unique grid indices
    for i in range(num_robots):
        for j in range(i+1, num_robots):
            # At least one of the two constraints below must be true
            xsep = cp.Variable(boolean=True)
            ysep = cp.Variable(boolean=True)
            constraints.append(xsep + ysep >= 1)
            # Enforces separation by at least 1 in the x direction
            b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
            # b0 = 0
            constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
            constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
            # b0 = 1
            constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
            constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
            # Enforces separation by at least 1 in the y direction
            b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
            # b1 = 0
            constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
            constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
            # b1 = 1
            constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
            constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
    
    # All robots and subgoals must be within grid bounds
    top_right = bottom_left + grid_size * cell_size
    for loc in robot_locations:
        constraints.append(bottom_left <= loc)
        constraints.append(loc <= top_right)
    for sg in subgoals:
        constraints.append(bottom_left <= sg)
        constraints.append(sg <= top_right)
    # Determine overlaps between obstacles and robots
    for obst_idx, obst_info in enumerate(obstacles):
        
        # Define the obstacle's bounds in grid coordinates
        if obst_info[0] == 'c':
            _, cx, cy, r = obst_info
            x_min = (cx - r - bottom_left[0]) / cell_size
            x_max = (cx + r - bottom_left[0]) / cell_size
            y_min = (cy - r - bottom_left[1]) / cell_size
            y_max = (cy + r - bottom_left[1]) / cell_size
        elif obst_info[0] == 'r':
            _, blx, bly, w, h = obst_info
            x_min = (blx - bottom_left[0]) / cell_size
            x_max = (blx + w - bottom_left[0]) / cell_size
            y_min = (bly - bottom_left[1]) / cell_size
            y_max = (bly + h - bottom_left[1]) / cell_size
             
        for i in range(num_robots):
            # Define temp binary variables for each condition
            temp_x_min = cp.Variable(boolean=True)
            temp_x_max = cp.Variable(boolean=True)
            temp_y_min = cp.Variable(boolean=True)
            temp_y_max = cp.Variable(boolean=True)
            # Enforce that robots cannot occupy cells overlapping with obstacles
            buffer = 0.05
            constraints.append(grid_indices[i, 0] + 1 + buffer <= x_min + M_ind * (1 - temp_x_min))
            constraints.append(grid_indices[i, 0] - buffer >= x_max - M_ind * (1 - temp_x_max))
            constraints.append(grid_indices[i, 1] + 1 + buffer <= y_min + M_ind * (1 - temp_y_min))
            constraints.append(grid_indices[i, 1] - buffer >= y_max - M_ind * (1 - temp_y_max))
            
            # Define boolean variables for overlaps in the x-direction and y-direction
            temp_x_sep = cp.Variable(boolean=True)
            temp_y_sep = cp.Variable(boolean=True)
            constraints.append(temp_x_min + temp_x_max >= 1 - temp_x_sep)
            constraints.append(temp_y_min + temp_y_max >= 1 - temp_y_sep)
            
            # The obstacle and cell overlap if there is overlap in both directions
            constraints.append(overlaps[obst_idx, i] <= temp_x_sep)
            constraints.append(overlaps[obst_idx, i] <= temp_y_sep)
            constraints.append(overlaps[obst_idx, i] >= temp_x_sep + temp_y_sep - 1)                
    # Solve the optimization problem
    prob = cp.Problem(cp.Minimize(cost), constraints)
    solve_start_time = time.time()
    solve_end_time = time.time()
    
    print("Solve time:", solve_end_time - solve_start_time)
    if prob.status != "optimal":
        print("Problem could not be solved to optimality.")
    return bottom_left.value, cell_centers.value
# Not convex
def two_corner_place_grid(robot_locations, grid_size=5, subgoals=[], obstacles=[]):
        Place a grid to cover robot locations with alignment to centers.

        inputs:
            - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
            - cell_size (float): the width of each grid cell in continuous space
            - grid_size (tuple): width of the grid in cells
            - obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...]
            - origin (tuple): bottom-left corner of the grid in continuous space
            - cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
    robot_locations = np.array(robot_locations)
    subgoals = np.array(subgoals)
    obstacles = np.array(obstacles)
    N = len(robot_locations)
    # Decision variable: Bottom-left corner of the grid in continuous space
    bottom_left = cp.Variable(2, name='bottom_left')
    top_right = cp.Variable(2, name='top_right')
    # Bottom-right and top-left corners of the grid for convenience
    # bottom_right = 0.5 * cp.hstack([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
    #                                 bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]])
    # top_left = 0.5 * cp.hstack([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
    #                             -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]])
    bottom_right = cp.Variable(2, name='bottom_right')
    top_left = cp.Variable(2, name='top_left')
    
    grid_x_hat = cp.Variable(2, name='grid_x_hat')
    grid_y_hat = cp.Variable(2, name='grid_y_hat')
    
    # Decision variable: Integer grid indices for each robot
    grid_indices = cp.Variable((N, 2), integer=True, name='grid_indices')
    # Calculate cell centers for each robot based on grid indices
    # Reshape origin to (1, 2) for broadcasting
    grid_x_offsets = cp.Variable((N, 2), name='grid_x_offsets')
    grid_y_offsets = cp.Variable((N, 2), name='grid_y_offsets')
    cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_x_offsets + grid_y_offsets
    # Objective: Minimize the sum of squared distances
    cost = cp.sum_squares(robot_locations - cell_centers)
    
    constraints = []
    
    # Ensure top-right and bottom-left corners are in the right orientation
    constraints.append(top_right >= bottom_left)
    
    # Fixing bottom-right and top-left corners
    constraints.append(2 * bottom_right[0] == bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1])
    constraints.append(2 * bottom_right[1] == bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1])
    constraints.append(2 * top_left[0] == bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1])
    constraints.append(2 * top_left[1] == -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1])
    
    # Defining grid_x_hat and grid_y_hat based on corners
    constraints.append(grid_x_hat == (bottom_right - bottom_left) * (1 / grid_size))
    constraints.append(grid_y_hat == (top_left - bottom_left) * (1 / grid_size))
    
    # Defining offsets in cell centers calculation
    constraints.append(grid_x_offsets == grid_x_hat * grid_indices)
    
    # Grid indices must be non-negative
    constraints.append(grid_indices >= 0)
    
    # Grid indices must fit within grid bounds
    constraints.append(grid_indices <= grid_size - 1)
    
    # No two robots can share a cell
    # Use Big M method to ensure unique grid indices
    M_ind = 10 * grid_size # Big M relative to grid indices
    M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
    for i in range(N):
        for j in range(i+1, N):
            # At least one of the two constraints below must be true
            xsep = cp.Variable(boolean=True)
            ysep = cp.Variable(boolean=True)
            constraints.append(xsep + ysep >= 1)
            # Enforces separation by at least 1 in the x direction
            b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
            # b0 = 0
            constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
            constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
            # b0 = 1
            constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
            constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
            # Enforces separation by at least 1 in the y direction
            b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
            # b1 = 0
            constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
            constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
            # b1 = 1
            constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
            constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
    
    # Solve the optimization problem
    prob_init_start_time = time.time()
    prob = cp.Problem(cp.Minimize(cost), constraints)
    solve_start_time = time.time()
    prob.solve(solver=cp.SCIP)
    solve_end_time = time.time()
    
    print("Time to add vars/constraints:", prob_init_start_time - start_time)
    print("Time to parse:", solve_start_time - prob_init_start_time)
    print("Time to solve:", solve_end_time - solve_start_time)
    if prob.status != "optimal":
        print("Problem could not be solved to optimality.")
        return None
    print("Grid Indices:", grid_indices.value)
    
    return bottom_left.value, cell_centers.value


def plot_grid(bottom_left, top_right, grid_size):
    import matplotlib.pyplot as plt
    
    bottom_left = np.array(bottom_left)
    top_right = np.array(top_right)
    bottom_right = np.array([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
                             bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]]) / 2
    top_left = np.array([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
                         -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]]) / 2
    
    x_prime_hat = (bottom_right - bottom_left) / grid_size
    y_prime_hat = (top_left - bottom_left) / grid_size
    # Draw the grid
    for i in range(grid_size + 1):
        # Draw vertical lines
        plt.plot([(bottom_left + i * x_prime_hat)[0], (top_left + i * x_prime_hat)[0]], 
                 [(bottom_left + i * x_prime_hat)[1], (top_left + i * x_prime_hat)[1]], 'k-')
        # Draw horizontal lines
        plt.plot([(bottom_left + i * y_prime_hat)[0], (bottom_right + i * y_prime_hat)[0]], 
                 [(bottom_left + i * y_prime_hat)[1], (bottom_right + i * y_prime_hat)[1]], 'k-')
def get_locations(low, high, num_robots, robot_radius=0.5, circ_obstacle_radii=[0.5, 1, 0.3], rect_obstacle_wh=[]):
    
    from shapely.geometry import Point, Polygon
    # Sort all entities by size
    queue = []
    for i in range(num_robots):
        queue.append((robot_radius, "robot"))
        queue.append((robot_radius, "subgoal"))
    for r in circ_obstacle_radii:
        queue.append((r, "c_obstacle"))
    for (w, h) in rect_obstacle_wh:
        queue.append(((w, h), "r_obstacle"))
    queue = sorted(queue, key=lambda x: x[0] if x[1] != "r_obstacle" else max(x[0]))
    robot_geoms = []
    subgoal_geoms = []
    obst_geoms = []
    iter = 1
        curr_dims, curr_type = queue[-1]
        curr_loc = np.random.uniform(low, high, 2)
        
        if curr_type == "r_obstacle":
            w, h = curr_dims
            rect_corners = np.array([(0, 0), (w, 0), (w, h), (0, h)])
            curr_geom = Polygon(rect_corners + np.array(curr_loc))
        else:
            curr_geom = Point(*curr_loc).buffer(curr_dims)

        for geom in obst_geoms:
            if curr_geom.intersects(geom):
                valid = False
                break    
        if curr_type != "subgoal":     
            for geom in robot_geoms:
                if curr_geom.intersects(geom):
                    break 
            for geom in subgoal_geoms:
                if curr_geom.intersects(geom):
            
        if valid:
            match curr_type:
                case "robot":
                    robot_locs.append(curr_loc)
                    robot_geoms.append(curr_geom)
                case "subgoal":
                    subgoal_locs.append(curr_loc)
                    subgoal_geoms.append(curr_geom)
                case "c_obstacle":
                    obst_locs.append(['c', *curr_loc, curr_dims])
                    obst_geoms.append(curr_geom)
                case "r_obstacle":
                    obst_locs.append(['r', *curr_loc, *curr_dims])
                    obst_geoms.append(curr_geom)
    return robot_locs, subgoal_locs, obst_locs
def main(seed, num_robots):
    np.random.seed(1)
    if seed is not None:
        np.random.seed(seed)
    
    roomba_radius = 0.5
    cell_size = 2.5 * roomba_radius
    grid_size = 5
    circ_obstacle_radii = [0.8]
    rect_obstacle_wh = [(2, 1.5), (1.1, 1.1)]
    
    robot_locations, subgoals, obstacles = get_locations(low=0, 
                                                            high=6, 
                                                            num_robots=num_robots, 
                                                            robot_radius=roomba_radius,
                                                            circ_obstacle_radii=circ_obstacle_radii,
                                                            rect_obstacle_wh=rect_obstacle_wh)
    bottom_left, cell_centers = place_grid(robot_locations=robot_locations, 
                                            cell_size=cell_size,
                                            grid_size=grid_size,
                                            subgoals=subgoals,
                                            obstacles=obstacles)
    
    print("Grid Origin (Bottom-Left Corner):", bottom_left)
    print("Cell Centers:", cell_centers)
    
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    
    fig, ax = plt.subplots()
    
    top_right = np.array(bottom_left) + grid_size * cell_size
    plot_grid(bottom_left, top_right, grid_size=grid_size)
    
    # Plot cell centers
    cell_centers = np.array(cell_centers)
    # plt.scatter(cell_centers[:, 0], cell_centers[:, 1], c='r', label='Cell Centers')
    for center in cell_centers:
        square = patches.Rectangle(center - cell_size/2, cell_size, cell_size, edgecolor='r', facecolor='r', alpha=0.2, linewidth=2)
        ax.add_patch(square)
    
    # Plot robot locations
    robot_locations = np.array(robot_locations)
    plt.scatter(robot_locations[:, 0], robot_locations[:, 1], c='r', label='Robot Locations')
    for (x, y) in robot_locations:
        circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='r', fill=False, linewidth=2)
        ax.add_patch(circle)
    # Plot subgoals
    subgoals = np.array(subgoals)
    plt.scatter(subgoals[:, 0], subgoals[:, 1], c='orange', marker='^', label='Subgoals')
    for (x, y) in subgoals:
        circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='orange', fill=False, linewidth=2)
        ax.add_patch(circle)

    from shapely.geometry import Point, Polygon
    
    circ_obstacles = np.array([obst[1:] for obst in obstacles if obst[0] == 'c'])
    rect_obstacles = np.array([obst[1:] for obst in obstacles if obst[0] == 'r'])
    # Plot circular obstacles
    # plt.scatter(circ_obstacles[:, 0], circ_obstacles[:, 1], c='black', marker='s', label='Obstacles')
    for (x, y, r) in circ_obstacles:
        circle = patches.Circle((x, y), radius=r, edgecolor='black', fill=False, linewidth=2)
        ax.add_patch(circle)
        obstacle_geom = Point(x, y).buffer(r)
        
        for x_idx in range(grid_size):
            for y_idx in range(grid_size):
                cell_corners = np.array([(0, 0), (cell_size, 0), (cell_size, cell_size), (0, cell_size)])
                cell_corners += np.array(bottom_left)
                cell_corners += np.array([x_idx, y_idx]) * cell_size
                cell_geom = Polygon(cell_corners)
                intersection = cell_geom.intersection(obstacle_geom)
                if cell_geom.intersects(obstacle_geom):
                    obstacle_cell = patches.Rectangle(cell_corners[0], cell_size, cell_size, edgecolor='black', facecolor='black', alpha=0.2+0.5*intersection.area/(cell_size**2), linewidth=2)
                    ax.add_patch(obstacle_cell)
    
    # Plot rectangular obstacles
    for (x, y, w, h) in rect_obstacles:
        rectangle = patches.Rectangle((x, y), w, h, edgecolor='black', fill=False, linewidth=2)
        ax.add_patch(rectangle)
        obstacle_geom = Polygon([(x, y), (x+w, y), (x+w, y+h), (x, y+h)])
        
        for x_idx in range(grid_size):
            for y_idx in range(grid_size):
                cell_corners = np.array([(0, 0), (cell_size, 0), (cell_size, cell_size), (0, cell_size)])
                cell_corners += np.array(bottom_left)
                cell_corners += np.array([x_idx, y_idx]) * cell_size
                cell_geom = Polygon(cell_corners)
                intersection = cell_geom.intersection(obstacle_geom)
                if cell_geom.intersects(obstacle_geom):
                    obstacle_cell = patches.Rectangle(cell_corners[0], cell_size, cell_size, edgecolor='black', facecolor='black', alpha=0.2+0.5*intersection.area/(cell_size**2), linewidth=2)
                    ax.add_patch(obstacle_cell)
    plt.legend(loc='upper left')
    ax.set_aspect('equal')

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--seed", 
        type=int, 
        default=None
    )
    parser.add_argument(
        "--num_robots", 
        type=int, 
    args = parser.parse_args()