Newer
Older
import cvxpy as cp
import numpy as np
def place_grid(robot_locations, cell_size, grid_size=5, subgoals=[], obstacles=[]):
"""
Place a grid to cover robot locations with alignment to centers.
inputs:
- robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
- cell_size (float): the width of each grid cell in continuous space
- grid_size (tuple): width of the grid in cells
- obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...]
outputs:
- origin (tuple): bottom-left corner of the grid in continuous space
- cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
start_time = time.time()
robot_locations = np.array(robot_locations)
subgoals = np.array(subgoals)
obstacles = np.array(obstacles)
N = len(robot_locations)
# Decision variable: Bottom-left corner of the grid in continuous space
bottom_left = cp.Variable(2, name='origin')
# Defin top right for convenience
top_right = bottom_left + grid_size * cell_size
# Decision variable: Integer grid indices for each robot
grid_indices = cp.Variable((N, 2), integer=True, name='grid_indices')
# Calculate cell centers for each robot based on grid indices
# Reshape origin to (1, 2) for broadcasting
cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_indices * cell_size + cell_size / 2
# Objective: Minimize the sum of squared distances
cost = cp.sum_squares(robot_locations - cell_centers)
# Constraints
constraints = []
# Grid indices must be non-negative
constraints.append(grid_indices >= 0)
# Grid indices must fit within grid bounds
constraints.append(grid_indices <= grid_size - 1)
# No two robots can share a cell
# Use Big M method to ensure unique grid indices
M_ind = 10 * grid_size # Big M relative to grid indices
M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
for i in range(N):
for j in range(i+1, N):
# At least one of the two constraints below must be true
xsep = cp.Variable(boolean=True)
ysep = cp.Variable(boolean=True)
constraints.append(xsep + ysep >= 1)
# Enforces separation by at least 1 in the x direction
b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
# b0 = 0
constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
# b0 = 1
constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
# Enforces separation by at least 1 in the y direction
b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
# b1 = 0
constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
# b1 = 1
constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
# All robots and subgoals must be within grid bounds
for sg in subgoals:
constraints.append(bottom_left <= sg)
constraints.append(sg <= top_right)
# Solve the optimization problem
prob_init_start_time = time.time()
prob = cp.Problem(cp.Minimize(cost), constraints)
solve_start_time = time.time()
solve_end_time = time.time()
print("Time to add vars/constraints:", prob_init_start_time - start_time)
print("Time to parse:", solve_start_time - prob_init_start_time)
print("Time to solve:", solve_end_time - solve_start_time)
if prob.status != "optimal":
print("Problem could not be solved to optimality.")
return bottom_left.value, cell_centers.value
def two_corner_place_grid(robot_locations, grid_size=5, subgoals=[], obstacles=[]):
Place a grid to cover robot locations with alignment to centers.
inputs:
- robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
- cell_size (float): the width of each grid cell in continuous space
- grid_size (tuple): width of the grid in cells
- obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...]
- origin (tuple): bottom-left corner of the grid in continuous space
- cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
start_time = time.time()
robot_locations = np.array(robot_locations)
subgoals = np.array(subgoals)
obstacles = np.array(obstacles)
# Decision variable: Bottom-left corner of the grid in continuous space
bottom_left = cp.Variable(2, name='bottom_left')
top_right = cp.Variable(2, name='top_right')
# Bottom-right and top-left corners of the grid for convenience
# bottom_right = 0.5 * cp.hstack([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
# bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]])
# top_left = 0.5 * cp.hstack([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
# -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]])
bottom_right = cp.Variable(2, name='bottom_right')
top_left = cp.Variable(2, name='top_left')
grid_x_hat = cp.Variable(2, name='grid_x_hat')
grid_y_hat = cp.Variable(2, name='grid_y_hat')
# Decision variable: Integer grid indices for each robot
grid_indices = cp.Variable((N, 2), integer=True, name='grid_indices')
# Calculate cell centers for each robot based on grid indices
# Reshape origin to (1, 2) for broadcasting
grid_x_offsets = cp.Variable((N, 2), name='grid_x_offsets')
grid_y_offsets = cp.Variable((N, 2), name='grid_y_offsets')
cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_x_offsets + grid_y_offsets
# Objective: Minimize the sum of squared distances
cost = cp.sum_squares(robot_locations - cell_centers)
# Ensure top-right and bottom-left corners are in the right orientation
constraints.append(top_right >= bottom_left)
# Fixing bottom-right and top-left corners
constraints.append(2 * bottom_right[0] == bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1])
constraints.append(2 * bottom_right[1] == bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1])
constraints.append(2 * top_left[0] == bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1])
constraints.append(2 * top_left[1] == -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1])
# Defining grid_x_hat and grid_y_hat based on corners
constraints.append(grid_x_hat == (bottom_right - bottom_left) * (1 / grid_size))
constraints.append(grid_y_hat == (top_left - bottom_left) * (1 / grid_size))
# Defining offsets in cell centers calculation
constraints.append(grid_x_offsets == grid_x_hat * grid_indices)
# Grid indices must be non-negative
constraints.append(grid_indices >= 0)
# Grid indices must fit within grid bounds
constraints.append(grid_indices <= grid_size - 1)
# No two robots can share a cell
# Use Big M method to ensure unique grid indices
M_ind = 10 * grid_size # Big M relative to grid indices
M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
for i in range(N):
for j in range(i+1, N):
# At least one of the two constraints below must be true
xsep = cp.Variable(boolean=True)
ysep = cp.Variable(boolean=True)
constraints.append(xsep + ysep >= 1)
# Enforces separation by at least 1 in the x direction
b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
# b0 = 0
constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
# b0 = 1
constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
# Enforces separation by at least 1 in the y direction
b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
# b1 = 0
constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
# b1 = 1
constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
prob_init_start_time = time.time()
prob = cp.Problem(cp.Minimize(cost), constraints)
solve_start_time = time.time()
solve_end_time = time.time()
print("Time to add vars/constraints:", prob_init_start_time - start_time)
print("Time to parse:", solve_start_time - prob_init_start_time)
print("Time to solve:", solve_end_time - solve_start_time)
if prob.status != "optimal":
print("Problem could not be solved to optimality.")
return None
print("Grid Indices:", grid_indices.value)
return bottom_left.value, cell_centers.value
def mccormick_envelope(w, x, xl, xu, y, yl, yu):
"""
Generates McCormick envelope constraints
"""
mec = []
mec.append(w >= xl*y + x*yl - xl*yl)
mec.append(w >= xu*y + x*yu - xu*yu)
mec.append(w <= xu*y + x*yl - xu*yl)
mec.append(w >= x*yu + xl*y - xl*yu)
return mec
def plot_grid(bottom_left, top_right, grid_size):
import matplotlib.pyplot as plt
bottom_left = np.array(bottom_left)
top_right = np.array(top_right)
bottom_right = np.array([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]]) / 2
top_left = np.array([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
-bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]]) / 2
x_prime_hat = (bottom_right - bottom_left) / grid_size
y_prime_hat = (top_left - bottom_left) / grid_size
for i in range(grid_size + 1):
plt.plot([(bottom_left + i * x_prime_hat)[0], (top_left + i * x_prime_hat)[0]],
[(bottom_left + i * x_prime_hat)[1], (top_left + i * x_prime_hat)[1]], 'k-')
plt.plot([(bottom_left + i * y_prime_hat)[0], (bottom_right + i * y_prime_hat)[0]],
[(bottom_left + i * y_prime_hat)[1], (bottom_right + i * y_prime_hat)[1]], 'k-')
def get_roomba_locs(low, high, num_robots, radius=0.5):
"""
Generates a list of roomba locations within the box bounded by points (low, low), (high, low), (high, high), (low, high).
The roombas must be separated by at least 2 * radius
"""
locs = []
while len(locs) < num_robots:
locs.append(np.random.uniform(low, high, 2))
for other_loc in locs[:-1]:
if np.linalg.norm(np.array(locs[-1]) - np.array(other_loc)) <= 2 * radius:
locs = locs[:-1]
break
return np.array(locs)
def main(seed, num_robots, plot, two_corner):
if seed is not None:
np.random.seed(seed)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
if not two_corner:
roomba_radius = 0.5
robot_locations = get_roomba_locs(low=0, high=6, num_robots=num_robots, radius=roomba_radius)
# robot_locations = np.random.uniform(low=0, high=5, size=(num_robots, 2))
cell_size = 2.5 * roomba_radius
grid_size = 5
# subgoals = np.random.uniform(low=0, high=6, size=(num_robots, 2))
subgoals = np.array([[0, 0], [0, 6], [6, 6], [6, 0]])
bottom_left, cell_centers = place_grid(robot_locations=robot_locations,
cell_size=cell_size,
grid_size=grid_size,
subgoals=subgoals)
print("Grid Origin (Bottom-Left Corner):", bottom_left)
print("Cell Centers:", cell_centers)
top_right = np.array(bottom_left) + grid_size * cell_size
else:
grid_size = 5
robot_locations = np.random.uniform(low=0, high=5, size=(num_robots, 2))
print("Robot Locations:", robot_locations)
bottom_left, top_right, grid_indices = two_corner_place_grid(robot_locations, grid_size)
print("Grid Bottom-Left Corner:", bottom_left)
print("Grid Top-Right Corner:", top_right)
print("Grid Indices:", grid_indices)
if plot:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig, ax = plt.subplots()
plot_grid(bottom_left, top_right, grid_size=grid_size)
# Plot cell centers
cell_centers = np.array(cell_centers)
plt.scatter(cell_centers[:, 0], cell_centers[:, 1], c='b', label='Cell Centers')
for center in cell_centers:
square = patches.Rectangle(center - cell_size/2, cell_size, cell_size, edgecolor='b', facecolor='b', alpha=0.2, linewidth=2)
ax.add_patch(square)
# Plot robot locations
robot_locations = np.array(robot_locations)
plt.scatter(robot_locations[:, 0], robot_locations[:, 1], c='r', label='Robot Locations')
for (x, y) in robot_locations:
circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='r', fill=False, linewidth=2)
ax.add_patch(circle)
if not two_corner:
subgoals = np.array(subgoals)
plt.scatter(subgoals[:, 0], subgoals[:, 1], c='orange', marker='^', label='Subgoals')
for (x, y) in subgoals:
circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='orange', fill=False, linewidth=2)
ax.add_patch(circle)
plt.legend(loc='upper left')
ax.set_aspect('equal')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed",
type=int,
default=None
)
parser.add_argument(
"--num_robots",
type=int,
)
parser.add_argument(
action='store_true'
)
parser.add_argument(
"--two_corner",
action='store_true'
)
args = parser.parse_args()
main(args.seed, args.num_robots, args.plot, args.two_corner)