Skip to content
Snippets Groups Projects
place_grid.py 20.8 KiB
Newer Older
import cvxpy as cp
import numpy as np
def place_grid(robot_locations, cell_size, grid_size=5, subgoals=[], obstacles=[]):
    """
        Place a grid to cover robot locations with alignment to centers.

        inputs:
            - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
            - cell_size (float): the width of each grid cell in continuous space
            - grid_size (tuple): width of the grid in cells
            - obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...]
        outputs:
            - origin (tuple): bottom-left corner of the grid in continuous space
            - cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
    robot_locations = np.array(robot_locations)
    subgoals = np.array(subgoals)
    obstacles = np.array(obstacles)
    num_robots = len(robot_locations)
    num_obst = len(obstacles)
    M_ind = 10 * grid_size # Big M relative to grid indices
    M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
    
    # Decision variable: Bottom-left corner of the grid in continuous space
    bottom_left = cp.Variable(2, name='origin')
    # Defin top right for convenience
    top_right = bottom_left + grid_size * cell_size
    
    # Decision variable: Integer grid indices for each robot
    grid_indices = cp.Variable((num_robots, 2), integer=True, name='grid_indices')
    
    # Calculate cell centers for each robot based on grid indices
    # Reshape origin to (1, 2) for broadcasting
    cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_indices * cell_size + cell_size / 2
    overlaps = cp.Variable((num_obst, num_robots), boolean=True)
    # Objective: Minimize the sum of squared distances and robot cell / obstacle overlaps
    alpha = 1
    cost = cp.sum_squares(robot_locations - cell_centers) + alpha * cp.sum(overlaps)
    
    # Constraints
    constraints = []
    
    # Grid indices must be non-negative
    constraints.append(grid_indices >= 0)
    
    # Grid indices must fit within grid bounds
    constraints.append(grid_indices <= grid_size - 1)
    
    # No two robots can share a cell
    # Use Big M method to ensure unique grid indices
    for i in range(num_robots):
        for j in range(i+1, num_robots):
            # At least one of the two constraints below must be true
            xsep = cp.Variable(boolean=True)
            ysep = cp.Variable(boolean=True)
            constraints.append(xsep + ysep >= 1)
            # Enforces separation by at least 1 in the x direction
            b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
            # b0 = 0
            constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
            constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
            # b0 = 1
            constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
            constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
            # Enforces separation by at least 1 in the y direction
            b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
            # b1 = 0
            constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
            constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
            # b1 = 1
            constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
            constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
    
    # All robots and subgoals must be within grid bounds
    for loc in robot_locations:
        constraints.append(bottom_left <= loc)
        constraints.append(loc <= top_right)
    for sg in subgoals:
        constraints.append(bottom_left <= sg)
        constraints.append(sg <= top_right)
    for obst_idx, (cx, cy, r) in enumerate(obstacles):
        for i in range(num_robots):
            # Define temp binary variables for each condition
            temp_x_min = cp.Variable(boolean=True)
            temp_x_max = cp.Variable(boolean=True)
            temp_y_min = cp.Variable(boolean=True)
            temp_y_max = cp.Variable(boolean=True)

            # Define the obstacle's bounds in grid coordinates
            x_min = (cx - r - bottom_left[0]) / cell_size
            x_max = (cx + r - bottom_left[0]) / cell_size
            y_min = (cy - r - bottom_left[1]) / cell_size
            y_max = (cy + r - bottom_left[1]) / cell_size

            # Enforce that robots cannot occupy cells overlapping with obstacles
            buffer = 0.05
            constraints.append(grid_indices[i, 0] + 1 + buffer <= x_min + M_ind * (1 - temp_x_min))
            constraints.append(grid_indices[i, 0] - buffer >= x_max - M_ind * (1 - temp_x_max))
            constraints.append(grid_indices[i, 1] + 1 + buffer <= y_min + M_ind * (1 - temp_y_min))
            constraints.append(grid_indices[i, 1] - buffer >= y_max - M_ind * (1 - temp_y_max))
            
            temp_x_sep = cp.Variable(boolean=True)
            temp_y_sep = cp.Variable(boolean=True)
            constraints.append(temp_x_min + temp_x_max >= 1 - temp_x_sep)
            constraints.append(temp_y_min + temp_y_max >= 1 - temp_y_sep)
            
            constraints.append(overlaps[obst_idx, i] <= temp_x_sep)
            constraints.append(overlaps[obst_idx, i] <= temp_y_sep)
            constraints.append(overlaps[obst_idx, i] >= temp_x_sep + temp_y_sep - 1)                
    # Solve the optimization problem
    prob_init_start_time = time.time()
    prob = cp.Problem(cp.Minimize(cost), constraints)
    solve_start_time = time.time()
    solve_end_time = time.time()
    
    print("Time to add vars/constraints:", prob_init_start_time - start_time)
    print("Time to parse:", solve_start_time - prob_init_start_time)
    print("Time to solve:", solve_end_time - solve_start_time)
    if prob.status != "optimal":
        print("Problem could not be solved to optimality.")
    print(f"Number of obstacle/robot-cell overlaps: {int(np.sum(overlaps.value))}/{num_obst*num_robots}")
    print(f"Cost: {cost.value}")
    
    return bottom_left.value, cell_centers.value
# Working on making this convex
def two_corner_place_grid(robot_locations, grid_size=5, subgoals=[], obstacles=[]):
        Place a grid to cover robot locations with alignment to centers.

        inputs:
            - robot_locations (list): locations of robots involved in conflict [[x,y], [x,y], ...]
            - cell_size (float): the width of each grid cell in continuous space
            - grid_size (tuple): width of the grid in cells
            - obstacles (list): locations of circular obstacles [[x,y,r], [x,y,r], ...]
            - origin (tuple): bottom-left corner of the grid in continuous space
            - cell_centers (list): centers of grid cells for each robot (same order as robot_locations)
    robot_locations = np.array(robot_locations)
    subgoals = np.array(subgoals)
    obstacles = np.array(obstacles)
    N = len(robot_locations)
    # Decision variable: Bottom-left corner of the grid in continuous space
    bottom_left = cp.Variable(2, name='bottom_left')
    top_right = cp.Variable(2, name='top_right')
    # Bottom-right and top-left corners of the grid for convenience
    # bottom_right = 0.5 * cp.hstack([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
    #                                 bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]])
    # top_left = 0.5 * cp.hstack([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
    #                             -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]])
    bottom_right = cp.Variable(2, name='bottom_right')
    top_left = cp.Variable(2, name='top_left')
    
    grid_x_hat = cp.Variable(2, name='grid_x_hat')
    grid_y_hat = cp.Variable(2, name='grid_y_hat')
    
    # Decision variable: Integer grid indices for each robot
    grid_indices = cp.Variable((N, 2), integer=True, name='grid_indices')
    # Calculate cell centers for each robot based on grid indices
    # Reshape origin to (1, 2) for broadcasting
    grid_x_offsets = cp.Variable((N, 2), name='grid_x_offsets')
    grid_y_offsets = cp.Variable((N, 2), name='grid_y_offsets')
    cell_centers = cp.reshape(bottom_left, (1, 2), order='C') + grid_x_offsets + grid_y_offsets
    # Objective: Minimize the sum of squared distances
    cost = cp.sum_squares(robot_locations - cell_centers)
    
    constraints = []
    
    # Ensure top-right and bottom-left corners are in the right orientation
    constraints.append(top_right >= bottom_left)
    
    # Fixing bottom-right and top-left corners
    constraints.append(2 * bottom_right[0] == bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1])
    constraints.append(2 * bottom_right[1] == bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1])
    constraints.append(2 * top_left[0] == bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1])
    constraints.append(2 * top_left[1] == -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1])
    
    # Defining grid_x_hat and grid_y_hat based on corners
    constraints.append(grid_x_hat == (bottom_right - bottom_left) * (1 / grid_size))
    constraints.append(grid_y_hat == (top_left - bottom_left) * (1 / grid_size))
    
    # Defining offsets in cell centers calculation
    constraints.append(grid_x_offsets == grid_x_hat * grid_indices)
    
    # Grid indices must be non-negative
    constraints.append(grid_indices >= 0)
    
    # Grid indices must fit within grid bounds
    constraints.append(grid_indices <= grid_size - 1)
    
    # No two robots can share a cell
    # Use Big M method to ensure unique grid indices
    M_ind = 10 * grid_size # Big M relative to grid indices
    M_cts = 10 * max(max(robot_locations[:,0]) - min(robot_locations[:,0]), max(robot_locations[:,1]) - min(robot_locations[:,1])) # Big M relative to robot locations
    for i in range(N):
        for j in range(i+1, N):
            # At least one of the two constraints below must be true
            xsep = cp.Variable(boolean=True)
            ysep = cp.Variable(boolean=True)
            constraints.append(xsep + ysep >= 1)
            # Enforces separation by at least 1 in the x direction
            b0 = cp.Variable(boolean=True) # b0 = 0 if robot i's x >= robot j's x, 1 otherwise
            # b0 = 0
            constraints.append(robot_locations[j, 0] - robot_locations[i, 0] <= M_cts * b0)
            constraints.append(grid_indices[i, 0] - grid_indices[j, 0] + M_ind * b0 + M_ind * (1 - xsep) >= 1)
            # b0 = 1
            constraints.append(robot_locations[i, 0] - robot_locations[j, 0] <= M_cts * (1 - b0))
            constraints.append(grid_indices[j, 0] - grid_indices[i, 0] + M_ind * (1 - b0) + M_ind * (1 - xsep) >= 1)
            # Enforces separation by at least 1 in the y direction
            b1 = cp.Variable(boolean=True) # b1 = 0 if robot i's y >= robot j's y, 1 otherwise
            # b1 = 0
            constraints.append(robot_locations[j, 1] - robot_locations[i, 1] <= M_cts * b1)
            constraints.append(grid_indices[i, 1] - grid_indices[j, 1] + M_ind * b1 + M_ind * (1 - ysep) >= 1)
            # b1 = 1
            constraints.append(robot_locations[i, 1] - robot_locations[j, 1] <= M_cts * (1 - b1))
            constraints.append(grid_indices[j, 1] - grid_indices[i, 1] + M_ind * (1 - b1) + M_ind * (1 - ysep) >= 1)
    
    # Solve the optimization problem
    prob_init_start_time = time.time()
    prob = cp.Problem(cp.Minimize(cost), constraints)
    solve_start_time = time.time()
    prob.solve(solver=cp.SCIP)
    solve_end_time = time.time()
    
    print("Time to add vars/constraints:", prob_init_start_time - start_time)
    print("Time to parse:", solve_start_time - prob_init_start_time)
    print("Time to solve:", solve_end_time - solve_start_time)
    if prob.status != "optimal":
        print("Problem could not be solved to optimality.")
        return None
    print("Grid Indices:", grid_indices.value)
    
    return bottom_left.value, cell_centers.value


def mccormick_envelope(w, x, xl, xu, y, yl, yu):
    """
    Generates McCormick envelope constraints
    """
    mec = []
    mec.append(w >= xl*y + x*yl - xl*yl)
    mec.append(w >= xu*y + x*yu - xu*yu)
    mec.append(w <= xu*y + x*yl - xu*yl)
    mec.append(w >= x*yu + xl*y - xl*yu)
    return mec
def plot_grid(bottom_left, top_right, grid_size):
    import matplotlib.pyplot as plt
    
    bottom_left = np.array(bottom_left)
    top_right = np.array(top_right)
    bottom_right = np.array([bottom_left[0] + top_right[0] - bottom_left[1] + top_right[1],
                             bottom_left[0] - top_right[0] + bottom_left[1] + top_right[1]]) / 2
    top_left = np.array([bottom_left[0] + top_right[0] + bottom_left[1] - top_right[1],
                         -bottom_left[0] + top_right[0] + bottom_left[1] + top_right[1]]) / 2
    
    x_prime_hat = (bottom_right - bottom_left) / grid_size
    y_prime_hat = (top_left - bottom_left) / grid_size
    # Draw the grid
    for i in range(grid_size + 1):
        # Draw vertical lines
        plt.plot([(bottom_left + i * x_prime_hat)[0], (top_left + i * x_prime_hat)[0]], 
                 [(bottom_left + i * x_prime_hat)[1], (top_left + i * x_prime_hat)[1]], 'k-')
        # Draw horizontal lines
        plt.plot([(bottom_left + i * y_prime_hat)[0], (bottom_right + i * y_prime_hat)[0]], 
                 [(bottom_left + i * y_prime_hat)[1], (bottom_right + i * y_prime_hat)[1]], 'k-')
def get_locations(low, high, num_robots, robot_radius=0.5, obstacle_radii=[0.5, 1, 0.3], max_iter=500):
    """
    Generates a list of roomba locations within the box bounded by points (low, low), (high, low), (high, high), (low, high).
    The roombas must be separated by at least 2 * radius
    """
    num_obst = len(obstacle_radii)
    
    queue = []
    for i in range(num_robots):
        queue.append((robot_radius, "robot"))
        queue.append((robot_radius, "subgoal"))
    for i in range(num_obst):
        queue.append((obstacle_radii[i], "obstacle"))
    queue = sorted(queue, key=lambda x: x[0])
    
    robot_locs = []
    subgoal_locs = []
    obst_locs = []
    while len(queue) > 0:
        curr_r, curr_type = queue[-1]
        curr_loc = np.random.uniform(low, high, 2)
        # match type:
        #     case "robot":
        #         robot_locs.append()
        #     case "subgoal":
        #     case "obstacle":
        valid = True
        for obst in obst_locs:
            if np.linalg.norm(curr_loc - obst[:2]) <= curr_r + obst[2]:
                valid = False
                break    
        if curr_type != "subgoal":     
            for robot in robot_locs:
                if np.linalg.norm(curr_loc - robot) <= curr_r + robot_radius:
                    valid = False
                    break
            for subgoal in subgoal_locs:
                if np.linalg.norm(curr_loc - subgoal) <= curr_r + robot_radius:
                    valid = False
                    break
            
        if valid:
            match curr_type:
                case "robot":
                    robot_locs.append(curr_loc)
                case "subgoal":
                    subgoal_locs.append(curr_loc)
                case "obstacle":
                    obst_locs.append(np.array([*curr_loc, curr_r]))
            queue = queue[:-1]
    return robot_locs, subgoal_locs, obst_locs


def main(seed, num_robots, plot, two_corner):
    if seed is not None:
        np.random.seed(seed)
    
    if not two_corner:
        roomba_radius = 0.5
        cell_size = 2.5 * roomba_radius
        grid_size = 5
Adam Sitabkhan's avatar
Adam Sitabkhan committed
        obstacle_radii = [0.7, 0.5]
        robot_locations, subgoals, obstacles = get_locations(low=0, 
Adam Sitabkhan's avatar
Adam Sitabkhan committed
                                                             high=6, 
                                                             num_robots=num_robots, 
                                                             robot_radius=roomba_radius,
                                                             obstacle_radii=obstacle_radii)

        bottom_left, cell_centers = place_grid(robot_locations=robot_locations, 
                                               cell_size=cell_size,
                                               grid_size=grid_size,
                                               subgoals=subgoals,
                                               obstacles=obstacles)
        
        print("Grid Origin (Bottom-Left Corner):", bottom_left)
        print("Cell Centers:", cell_centers)
        
        top_right = np.array(bottom_left) + grid_size * cell_size
    else:
        grid_size = 5
        robot_locations = np.random.uniform(low=0, high=5, size=(num_robots, 2))
        print("Robot Locations:", robot_locations)
        
        bottom_left, top_right, grid_indices = two_corner_place_grid(robot_locations, grid_size)
        print("Grid Bottom-Left Corner:", bottom_left)
        print("Grid Top-Right Corner:", top_right)
        print("Grid Indices:", grid_indices)
    if plot:
        import matplotlib.pyplot as plt
        import matplotlib.patches as patches
        
        fig, ax = plt.subplots()
        plot_grid(bottom_left, top_right, grid_size=grid_size)
        
        # Plot cell centers
        cell_centers = np.array(cell_centers)
Adam Sitabkhan's avatar
Adam Sitabkhan committed
        # plt.scatter(cell_centers[:, 0], cell_centers[:, 1], c='r', label='Cell Centers')
        for center in cell_centers:
Adam Sitabkhan's avatar
Adam Sitabkhan committed
            square = patches.Rectangle(center - cell_size/2, cell_size, cell_size, edgecolor='r', facecolor='r', alpha=0.2, linewidth=2)
            ax.add_patch(square)
        
        # Plot robot locations
        robot_locations = np.array(robot_locations)
        plt.scatter(robot_locations[:, 0], robot_locations[:, 1], c='r', label='Robot Locations')
        for (x, y) in robot_locations:
            circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='r', fill=False, linewidth=2)
            
        if not two_corner:
            subgoals = np.array(subgoals)
            plt.scatter(subgoals[:, 0], subgoals[:, 1], c='orange', marker='^', label='Subgoals')
            for (x, y) in subgoals:
                circle = patches.Circle((x, y), radius=roomba_radius, edgecolor='orange', fill=False, linewidth=2)
                ax.add_patch(circle)
Adam Sitabkhan's avatar
Adam Sitabkhan committed

            from shapely.geometry import Point, Polygon
            
            obstacles = np.array(obstacles)
            plt.scatter(obstacles[:, 0], obstacles[:, 1], c='black', marker='s', label='Obstacles')
            for (x, y, r) in obstacles:
                circle = patches.Circle((x, y), radius=r, edgecolor='black', fill=False, linewidth=2)
                ax.add_patch(circle)
Adam Sitabkhan's avatar
Adam Sitabkhan committed
                obstacle_geom = Point(x, y).buffer(r)
                
                for x_idx in range(grid_size):
                    for y_idx in range(grid_size):
                        cell_corners = np.array([(0, 0), (cell_size, 0), (cell_size, cell_size), (0, cell_size)])
                        cell_corners += np.array(bottom_left)
                        cell_corners += np.array([x_idx, y_idx]) * cell_size
                        cell_geom = Polygon(cell_corners)
                        
                        intersection = cell_geom.intersection(obstacle_geom)
                        if cell_geom.intersects(obstacle_geom):
                            obstacle_cell = patches.Rectangle(cell_corners[0], cell_size, cell_size, edgecolor='black', facecolor='black', alpha=0.2+0.5*intersection.area/(cell_size**2), linewidth=2)
                            ax.add_patch(obstacle_cell)
                            
                            
                            
                        
                
        
        plt.legend(loc='upper left')
        
        ax.set_aspect('equal')

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--seed", 
        type=int, 
        default=None
    )
    parser.add_argument(
        "--num_robots", 
        type=int, 
        action='store_true'
    )
    parser.add_argument(
        "--two_corner", 
        action='store_true'
    main(args.seed, args.num_robots, args.plot, args.two_corner)