Skip to content
Snippets Groups Projects
multi_path_tracking.py 37.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • from guided_mrmp.planners.singlerobot.RRTStar import RRTStar
    
    
    from guided_mrmp.utils import Roomba
    from guided_mrmp.utils import Conflict, Robot, Env
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
    from guided_mrmp.controllers.multi_mpc import MultiMPC
    from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
    from guided_mrmp.utils import Roomba
    
    from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
    
    def initialize_libraries(library_fnames=["guided_mrmp/database/2x3_library","guided_mrmp/database/3x3_library","guided_mrmp/database/5x2_library"]):
        """
        Load the 2x3, 3x3, and 2x5 libraries. Store them in self.lib-x- 
        Inputs: 
            library_fnames - the folder containing the library files
        """
        from guided_mrmp.utils.library import Library
        # Create each of the libraries
        print(f"Loading libraries. This usually takes about 10 seconds...")
        lib_2x3 = Library(library_fnames[0])
        lib_2x3.read_library_from_file()
        
        lib_3x3 = Library(library_fnames[1])
        lib_3x3.read_library_from_file()
    
        
        lib_2x5 = Library(library_fnames[2])
        lib_2x5.read_library_from_file()
    
        return lib_2x3, lib_3x3, lib_2x5
    
    class DiscreteRobot:
        def __init__(self, start, goal, label):
            self.start = start
            self.goal = goal
            self.current_position = start
            self.label = label
    
    class MultiPathTracker:
        def __init__(self, env, initial_positions, dynamics, target_v, T, DT, waypoints, settings, lib_2x3, lib_3x3, lib_2x5):
            """
            Initializes the PathTracker object.
            Parameters:
            - initial_positions: List of the initial positions of the robots [x, y, heading].
            - dynamics: The dynamics model of the robots.
            - target_v: The target velocity of the robots.
            - T: The time horizon for the model predictive control (MPC).
            - DT: The time step for the MPC.
            - waypoints: A list of waypoints defining the desired path for each robot.
            """
            # State of the robot [x,y, heading]
            self.env = env
    
            self.states = initial_positions
            self.num_robots = len(initial_positions)
            self.dynamics = dynamics
            self.T = T
            self.DT = DT
            self.target_v = target_v
    
            self.radius = dynamics.radius
    
    
            self.update_ref_paths = False
    
            # helper variable to keep track of mpc output
            # starting condition is 0,0
            self.control = np.zeros((self.num_robots, 2))
    
            self.K = int(T / DT)
    
            # For a car model 
            # Q = [20, 20, 10, 20]  # state error cost
            # Qf = [30, 30, 30, 30]  # state final error cost
            # R = [10, 10]  # input cost
            # P = [10, 10]  # input rate of change cost
            # self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P)
    
            # libraries for the discrete solver
            self.lib_2x3 = lib_2x3
            self.lib_3x3 = lib_3x3
            self.lib_2x5 = lib_2x5
    
    
            # For a circular robot (easy dynamics)
            Q = [40, 40, 0]  # state error cost
            Qf = [20,20, 0]  # state final error cost
            R = [10, 10]  # input cost
            P = [10, 10]  # input rate of change cost
            self.mpc = MultiMPC(self.num_robots, dynamics, T, DT, Q, Qf, R, P, settings['model_predictive_controller'], settings['environment']['circle_obstacles'])
    
            self.circle_obs = settings['environment']['circle_obstacles']
    
            # Path from waypoint interpolation
            self.paths = []
            for wp in waypoints:
                self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
    
            
            print(f"paths = {len(self.paths)}")
    
            # Helper variables to keep track of the sim
            self.sim_time = 0
            self.x_history = [ [] for _ in range(self.num_robots) ]
            self.y_history = [ [] for _ in range(self.num_robots) ]
            self.v_history = [ [] for _ in range(self.num_robots) ]
            self.h_history = [ [] for _ in range(self.num_robots) ]
            self.a_history = [ [] for _ in range(self.num_robots) ]
            self.d_history = [ [] for _ in range(self.num_robots) ]
            self.optimized_trajectories_hist = [ [] for _ in range(self.num_robots) ]
            self.optimized_trajectory = None
    
    
        def trajectories_overlap(self, traj1, traj2, threshold):
            """
            Checks if two trajectories overlap. We only care about xy positions.
    
            Args:
                traj1 (3xn numpy array): First trajectory. First row is x, second row is y, third row is heading.
                traj2 (3xn numpy array): Second trajectory.
                threshold (float): Distance threshold to consider a collision.
    
            Returns:
                bool: True if trajectories overlap, False otherwise.
            """
            for i in range(traj1.shape[1]):
                for j in range(traj2.shape[1]):
                    if np.linalg.norm(traj1[0:2, i] - traj2[0:2, j]) < 2*threshold:
                        return True
            return False
        
    
        def ego_to_global_roomba(self, state, mpc_out):
            """
            Transforms optimized trajectory XY points from ego (robot) reference
            into global (map) frame.
    
            Args:
                mpc_out (numpy array): Optimized trajectory points in ego reference frame.
    
            Returns:
                numpy array: Transformed trajectory points in global frame.
            """
            # Extract x, y, and theta from the state
            x = state[0]
            y = state[1]
            theta = state[2]
    
            # Rotation matrix to transform points from ego frame to global frame
            Rotm = np.array([
                [np.cos(theta), -np.sin(theta)],
                [np.sin(theta), np.cos(theta)]
            ])
    
            # Initialize the trajectory array (only considering XY points)
            trajectory = mpc_out[0:2, :]
    
            # Apply rotation to the trajectory points
            trajectory = Rotm.dot(trajectory)
    
            # Translate the points to the robot's position in the global frame
            trajectory[0, :] += x
            trajectory[1, :] += y
    
            return trajectory
        
        def get_next_control(self, state, show_plots=False):
            # optimization loop
            # start=time.time()
    
            # Get Reference_traj -> inputs are in worldframe
            # 1. Get the reference trajectory for each robot
            targets = []
            for i in range(self.num_robots):
                targets.append(get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT, len(self.x_history[i])+1))
    
            # dynamycs w.r.t robot frame
            # curr_state = np.array([0, 0, self.state[2], 0])
            curr_states = np.zeros((self.num_robots, 3))
            x_mpc, u_mpc = self.mpc.step(
                curr_states,
                targets,
                self.control
    
    190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
            
            # only the first one is used to advance the simulation
            # self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
    
            self.control = []
            for i in range(self.num_robots):
                self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
    
            return x_mpc, self.control
        
    
        def done(self):
            for i in range(self.num_robots):
                # print(f"state = {self.states[i]}")
                # print(f"path = {self.paths[i][:, -1]}")
                if (np.sqrt((self.states[i][0] - self.paths[i][0, -1]) ** 2 + (self.states[i][1] - self.paths[i][1, -1]) ** 2) > 1):
                    return False
            return True
        
        def plot_current_world_state(self):
            """
            Plot the current state of the world.
            """
    
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
    
            # Plot the current state of each robot using the most recent values from
            # x_history, y_history, and h_history
            colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
    
            for i in range(self.num_robots):
                plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
    
            # plot the goal of each robot with solid circle
            for i in range(self.num_robots):
                x, y, theta = self.paths[i][:, -1]
                plt.plot(x, y, 'o', color=colors[i])
                circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
                plt.gca().add_artist(circle1)
    
            # plot the ref path of each robot
            for i in range(self.num_robots):
                plt.plot(self.paths[i][0, :], self.paths[i][1, :], '--', color=colors[i])
    
    
            # set the size of the plot to be 10x10
            plt.xlim(0, 10)
            plt.ylim(0, 10)
    
            # force equal aspect ratio
            plt.gca().set_aspect('equal', adjustable='box')
    
            
            plt.show()
    
        def run(self, show_plots=False):
            """
            Run the path tracker algorithm.
            Parameters:
            - show_plots (bool): Flag indicating whether to show plots during the simulation. Default is False.
            Returns:
            - numpy.ndarray: Array containing the history of x, y, and h coordinates.
            """
    
            # Add the initial state to the histories
            self.states = np.array(self.states)
            for i in range(self.num_robots):
                self.x_history[i].append(self.states[i, 0])
                self.y_history[i].append(self.states[i, 1])
                self.h_history[i].append(self.states[i, 2])
            if show_plots: self.plot_sim()
    
            self.plot_current_world_state()
            
            while 1:
                # check if all robots have reached their goal
                if self.done():
                    print("Success! Goal Reached")
                    return np.asarray([self.x_history, self.y_history, self.h_history])
                
                # plot the current state of the robots
                self.plot_current_world_state()
                
                # get the next control for all robots
                x_mpc, controls = self.get_next_control(self.states)
    
                next_states = []
                for i in range(self.num_robots):
                    next_states.append(self.dynamics.next_state(self.states[i], controls[i], self.DT))
    
                self.states = next_states
    
                self.states = np.array(self.states)
                for i in range(self.num_robots):
                    self.x_history[i].append(self.states[i, 0])
                    self.y_history[i].append(self.states[i, 1])
                    self.h_history[i].append(self.states[i, 2])
                
                if self.update_ref_paths:
                    self.update_reference_paths()
                    self.update_ref_paths = False            
    
                # use the optimizer output to preview the predicted state trajectory
                # self.optimized_trajectory = self.ego_to_global(x_mpc.value)
                if show_plots: self.optimized_trajectory = self.ego_to_global_roomba(x_mpc)
                if show_plots: self.plot_sim()
                
    
    class MultiPathTrackerDatabase(MultiPathTracker):
        def get_temp_starts_and_goals(self):
            # the temporary starts are the current positions of the robots snapped to the grid
            # based on the continuous space location of the robot, we find the cell in the grid that 
            # includes that continuous space location using the top left of the grid as a reference point
    
            import math
            temp_starts = []
            for r in range(self.num_robots):
                print(f"self.states = {self.states}")
                x, y, theta = self.states[r]
                cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
                cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
                temp_starts.append([cell_x, cell_y])
    
    
            # the temmporary goal is the point at the end of the robot's predicted traj
            temp_goals = []
            for r in range(self.num_robots):
                traj = self.ego_to_global_roomba(self.states[r], self.trajs[r])
                x = traj[0][-1]
                y = traj[1][-1]
                cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
                cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
                temp_goals.append([cell_x,cell_y])
    
            # self.starts = temp_starts
            # self.goals = temp_goals
    
            return temp_starts, temp_goals
        
        def create_discrete_robots(self, starts, goals):
            discrete_robots = []
            for i in range(len(starts)):
                start = starts[i]
                goal = goals[i]
                discrete_robots.append(DiscreteRobot(start, goal, i))
            return discrete_robots
          
        def get_discrete_solution(self, conflict, all_conflicts, grid):
            #  create an instance of a discrete solver
    
            starts, goals = self.get_temp_starts_and_goals()
            # print(f"temp starts = {starts}")
            # print(f"temp goals = {goals}")
    
            disc_robots = self.create_discrete_robots(starts, goals)
    
            disc_conflict = []
            for c in conflict:
                disc_conflict.append(disc_robots[c])
    
            disc_all_conflicts = []
            for c in all_conflicts:
                this_conflict = []
                for i in c:
                    this_conflict.append(disc_robots[i])
                disc_all_conflicts.append(this_conflict)
    
        
    
            print(f"this conflict = {disc_conflict}")
            print(f"all conflicts = {all_conflicts}")
    
            # visualize the grid
            self.draw_grid()
    
            grid_solver = DiscreteResolver(disc_conflict, disc_robots, starts, goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
            subproblem = grid_solver.find_subproblem()
    
            if subproblem is None:
                print("Couldn't find a discrete subproblem")
                return None
            # print(f"subproblem = {subproblem}")
            grid_solution = grid_solver.solve_subproblem(subproblem)
            # print(f"grid_solution = {grid_solution}")
            return grid_solution
        
        def get_initial_guess(self, grid_solution, num_robots, N, cp_dist):
            # turn this solution into an initial guess 
            # turn this solution into an initial guess 
            initial_guess_state = np.zeros((num_robots*3, N+1))
            # the initial guess for time is the length of the longest path in the solution
            initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])
    
            for i in range(num_robots):
    
                print(f"Robot {i+1} solution:")
                rough_points = np.array(grid_solution[i])
                points = []
                for point in rough_points:
                    if point[0] == -1: break
                    points.append(point)
                
                points = np.array(points)
                print(f"points = {points}")
    
                smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
    
                print(f"smoothed_curve = {smoothed_curve}")
    
                
    
                # translate the smoothed curve so that the first point is at the current robot position
                # smoothed_curve[:, 0] += current_robot_x_pos
                # smoothed_curve[:, 1] += current_robot_y_pos
     
                initial_guess_state[i*3, :] = (smoothed_curve[:, 0])*self.cell_size      # x
                initial_guess_state[i*3 + 1, :] = (smoothed_curve[:, 1])*self.cell_size    # y
    
                current_robot_x_pos = self.states[i][0]
                current_robot_y_pos = self.states[i][1]
    
            
                # translate the initial guess so that the first point is at (0,0)
                initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
                initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]
    
                # translate the initial guess so that the first point is at the current robot position
                initial_guess_state[i*3, :] += current_robot_x_pos
                initial_guess_state[i*3 + 1, :] += current_robot_y_pos + self.cell_size
    
                
                headings = calculate_headings(smoothed_curve)
                headings.append(headings[-1])
    
                initial_guess_state[i*3 + 2, :] = headings
    
            
    
            initial_guess_control = np.zeros((num_robots*2, N))
    
            dt = initial_guess_T / N
            change_in_position = []
            for i in range(num_robots):
                x = initial_guess_state[i*3, :]         # x
                y = initial_guess_state[i*3 + 1, :]    # y
    
    
                change_in_position = []
                for j in range(len(x)-1):
                    pos1 = np.array([x[j], y[j]])
                    pos2 = np.array([x[j+1], y[j+1]])
    
                    change_in_position.append(np.linalg.norm(pos2 - pos1))
    
                velocity = np.array(change_in_position) / dt
                initial_guess_control[i*2, :] = velocity
    
                # omega is the difference between consecutive headings
                headings = initial_guess_state[i*3 + 2, :]
                omega = np.diff(headings)
                initial_guess_control[i*2 + 1, :] = omega
    
            return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}
    
        def place_grid(self, robot_locations):
            """
            Given the locations of robots that need to be covered in continuous space, find 
            and place the grid. We don't need a very large grid to place subproblems, so 
            we will only place a grid of size self.grid_size x self.grid_size
    
            inputs:
                - robot_locations (list): locations of robots involved in conflict
            outputs:
                - grid (numpy array): The grid that we placed
                - top_left (tuple): The top left corner of the grid in continuous space
            """
            # Find the minimum and maximum x and y coordinates of the robot locations
            self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
            self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
            self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
            self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]
    
            # find the average x and y coordinates of the robot locations
            avg_x = sum([loc[0] for loc in robot_locations]) / len(robot_locations)
            avg_y = sum([loc[1] for loc in robot_locations]) / len(robot_locations)
    
            self.temp_avg_x = avg_x 
            self.temp_avg_y = avg_y
    
            print(f"avg_x = {avg_x}, avg_y = {avg_y}")
    
            # Calculate the top left corner of the grid
            # make it so that the grid is centered around the robots
            self.cell_size = self.radius*3
            self.grid_size = 5
    
            print(f"avg_x = {avg_x} - {int(self.grid_size*self.cell_size/2)}")
            print(f"avg_y = {avg_y} - {int(self.grid_size*self.cell_size/2)}")
            self.top_left_grid = (avg_x - int(self.grid_size*self.cell_size/2), avg_y + int(self.grid_size*self.cell_size/2))
            print(f"self.grid_size = {self.grid_size}")
            print(f"top_left_grid = {self.top_left_grid}")
            
            self.draw_grid()
    
            # Check if, for every robot, the cell value of the start and the cell value 
            # of the goal are the same. If they are, then we can't find a discrete solution that 
            # will make progress.
            all_starts_goals_equal = self.all_starts_goals_equal()
    
            
    
            import copy
            original_top_left = copy.deepcopy(self.top_left_grid)
    
            x_shift = [-5,5]
            y_shift = [-5,5]
            for x in np.arange(x_shift[0], x_shift[1],.5):
                y =0 
                # print(f"x = {x}, y = {y}")
                self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
                all_starts_goals_equal = self.all_starts_goals_equal()
                # self.draw_grid()
                if not all_starts_goals_equal: break
    
            if all_starts_goals_equal:
                for y in np.arange(y_shift[0], y_shift[1],.5):
                    x =0 
                    # print(f"x = {x}, y = {y}")
                    self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
                    all_starts_goals_equal = self.all_starts_goals_equal()
                    # self.draw_grid()
                    if not all_starts_goals_equal: break
    
            print(f"updated top_left_grid = {self.top_left_grid}")  
            # self.draw_grid()
    
            if all_starts_goals_equal:
                print("All starts and goals are equal")
                return None
    
            grid = self.get_obstacle_map()
            
            return grid
        
        def get_obstacle_map(self):
            """
            Create a map of the environment with obstacles
            """
            # create a grid of size self.grid_size x self.grid_size
            grid = np.zeros((self.grid_size, self.grid_size))
    
            # check if there are any obstacles in any of the cells
            grid = np.zeros((self.grid_size, self.grid_size)) 
            for i in range(self.grid_size):
                for j in range(self.grid_size):
                    x, y = self.get_grid_cell_location(i, j)
                    for obs in []:
                    # for obs in self.circle_obs:
                        if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2] + self.radius:
                            grid[j, i] = 1
                            break
    
            return grid
        
        def get_grid_cell(self, x, y):
            """
            Given a continuous space x and y, find the cell in the grid that includes that location
            """
            import math
    
            # find the closest grid cell that is not an obstacle
            cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
            cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
    
            return cell_x, cell_y
        
        def get_grid_cell_location(self, cell_x, cell_y):
            """
            Given a cell in the grid, find the center of that cell in continuous space
            """
            x = self.top_left_grid[0] + (cell_x + 0.5) * self.cell_size
            y = self.top_left_grid[1] - (cell_y + 0.5) * self.cell_size
            return x, y
      
        def plot_trajs(self, traj1, traj2, radius):
            """
            Plot the trajectories of two robots.
            """
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
    
            # Plot the current state of each robot using the most recent values from
            # x_history, y_history, and h_history
            colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
    
            for i in range(self.num_robots):
                plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
    
            # plot the goal of each robot with solid circle
            for i in range(self.num_robots):
                x, y, theta = self.paths[i][:, -1]
                plt.plot(x, y, 'o', color=colors[i])
                circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
                plt.gca().add_artist(circle1)
    
            
            for i in range(traj1.shape[1]):
                circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
                plt.gca().add_artist(circle1)
    
            for i in range(traj2.shape[1]):
                circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
                plt.gca().add_artist(circle2)
    
            
    
            # set the size of the plot to be 10x10
            plt.xlim(0, 10)
            plt.ylim(0, 10)
    
            # force equal aspect ratio
            plt.gca().set_aspect('equal', adjustable='box')
            
    
            plt.show()
    
        def draw_grid(self):
            starts, goals = self.get_temp_starts_and_goals()
    
            # draw the whole environment with the local grid drawn on top
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
    
            # Plot the current state of each robot using the most recent values from
            # x_history, y_history, and h_history
            colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
    
            for i in range(self.num_robots):
                plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
    
            # plot the goal of each robot with solid circle
            for i in range(self.num_robots):
                x, y, theta = self.paths[i][:, -1]
                plt.plot(x, y, 'o', color=colors[i])
                circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
                plt.gca().add_artist(circle1)
    
            # draw the horizontal and vertical lines of the grid
            for i in range(self.grid_size + 1):
                # Draw vertical lines
                plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], 
                            [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
                # Draw horizontal lines
                plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], 
                            [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
    
            # draw the obstacles
            for obs in self.circle_obs:
                circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
                plt.gca().add_artist(circle)
    
    
            # plot the robots' continuous space subgoals
            for idx in range(self.num_robots):
            
                traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
                x = traj[0][-1]
                y = traj[1][-1]
                plt.plot(x, y, '^', color=colors[idx])
                circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
                plt.gca().add_artist(circle1)
    
            # set the size of the plot to be 10x10
            plt.xlim(0, 10)
            plt.ylim(0, 10)
    
            # force equal aspect ratio
            plt.gca().set_aspect('equal', adjustable='box')
    
            plt.show()
    
        def draw_grid_solution(self, state):
            
            # draw the whole environment with the local grid drawn on top
            import matplotlib.pyplot as plt
            import matplotlib.cm as cm
    
            # Plot the current state of each robot using the most recent values from
            # x_history, y_history, and h_history
            colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
    
            for i in range(self.num_robots):
                plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
    
            # plot the goal of each robot with solid circle
            for i in range(self.num_robots):
                x, y, theta = self.paths[i][:, -1]
                plt.plot(x, y, 'o', color=colors[i])
                circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
                plt.gca().add_artist(circle1)
    
            # draw the horizontal and vertical lines of the grid
            for i in range(self.grid_size + 1):
                # Draw vertical lines
                plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size], 
                            [self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
                # Draw horizontal lines
                plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size], 
                            [self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
    
            # draw the obstacles
            for obs in self.circle_obs:
                circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
                plt.gca().add_artist(circle)
    
            for i in range(self.num_robots):
                x = state[i*3, :]
                y = state[i*3 + 1, :]
                plt.plot(x, y, 'x', color=colors[i])
    
            # plot the robots' continuous space subgoals
            for idx in range(self.num_robots):
            
                traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
                x = traj[0][-1]
                y = traj[1][-1]
                plt.plot(x, y, '^', color=colors[idx])
                circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
                plt.gca().add_artist(circle1)
    
            # set the size of the plot to be 10x10
            plt.xlim(0, 10)
            plt.ylim(0, 10)
    
            # force equal aspect ratio
            plt.gca().set_aspect('equal', adjustable='box')
    
            # title
            plt.title("Discrete Solution")
    
            plt.show()
    
        def all_starts_goals_equal(self):
            """
            Check if, for every robot, the cell value of the start and the cell value 
            of the goal are the same. 
            """
            all_starts_goals_equal = True
            for r in range(self.num_robots):
                start = self.states[r]
                traj = self.ego_to_global_roomba(start, self.trajs[r])
                goal = [traj[0, -1], traj[1, -1]]
                
                start_cell = self.get_grid_cell(start[0], start[1])
                goal_cell = self.get_grid_cell(goal[0], goal[1])
    
                if start_cell != goal_cell:
                    all_starts_goals_equal = False
                    break
    
            return all_starts_goals_equal
        
        def get_next_control(self, state, show_plots=False):
            # optimization loop
            # start=time.time()
    
            self.update_ref_paths = False
    
            # Get Reference_traj -> inputs are in worldframe
            # 1. Get the reference trajectory for each robot
            targets = []
            for i in range(self.num_robots):
                ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
                
                print(f"Robot {i} reference trajectory = {ref}")
                targets.append(ref)
            self.trajs = targets
    
            # 2. Check if the targets of any two robots overlap
            self.all_conflicts = []
            for i in range(self.num_robots):
                for j in range(i + 1, self.num_robots):
                    print(f"targets[i] = {targets[i]}")
                    traj1 = self.ego_to_global_roomba(state[i], targets[i])
                    traj2 = self.ego_to_global_roomba(state[j], targets[j])
                    if self.trajectories_overlap(traj1, traj2, self.radius):
                        # plot the trajectories
                        
                        self.plot_trajs(traj1, traj2, self.radius)
    
    
                        print(f"Collision detected between robot {i} and robot {j}")
                        self.all_conflicts.append((i, j))
    
            
    
            for c in self.all_conflicts:
                # 3. If they do collide, then reroute the reference trajectories of these robots
    
                # Get the robots involved in the conflict
                robots = c
                robot_positions = [state[i] for i in robots]
    
                # Put down a local grid
                self.grid = self.place_grid(robot_positions)
    
                # set the starts (robots' current positions) 
                self.starts = []
                self.goals = []
                for i in range(self.num_robots):
                    self.starts.append(self.states[i])
    
                    traj = self.ego_to_global_roomba(self.states[i], self.trajs[i])
                    x = traj[0][-1]
                    y = traj[1][-1]
                    self.goals.append([x,y])
    
                
    
                # Solve a discrete version of the problem 
                # Find a subproblem and solve it
                grid_solution = self.get_discrete_solution(c, [c],self.grid)
    
                
    
                if grid_solution:
                    
                    self.update_ref_paths = False
                    initial_guess = self.get_initial_guess(grid_solution, self.num_robots, 20, 1)
                    initial_guess_state = initial_guess['X']
    
                    self.draw_grid_solution(initial_guess_state)
                    
                    print(f"initial_guess_state shape = {initial_guess_state.shape}")
                    print(f"initial_guess_state = {initial_guess_state}")
    
                    # for each robot in conflict, reroute its reference trajectory to match the grid solution
                    num_robots_in_conflict = len(c)
                    import copy
                    old_paths = copy.deepcopy(self.paths)
    
                    self.paths = []
                    for i in range(num_robots_in_conflict):
                        r = c[i]
                        new_ref = initial_guess_state[i*3:i*3+3, :]
                        print(f"Robot {r} rerouting to {new_ref}")
    
                        # plan from the last point of the ref path to the robot's goal
                        # plan an RRT path from the current state to the goal
                        x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
                        x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
    
                        print(f"x_start = {x_start}, x_goal = {x_goal}")
    
                        rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
                        rrtstarpath2,tree = rrtstar2.run()
                        rrtstarpath2 = list(reversed(rrtstarpath2))
                        xs = new_ref[0, :].tolist()
                        ys = new_ref[1, :].tolist()
                        for node in rrtstarpath2:
                            xs.append(node[0])
                            ys.append(node[1])
    
                        wp = [xs,ys]
    
                        # Path from waypoint interpolation
                        self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
    
                    targets = []
                    for i in range(self.num_robots):
                        ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
                        
                        print(f"Robot {i} reference trajectory = {ref}")
                        targets.append(ref)
                    self.trajs = targets
    
                if grid_solution is None:
                    # if there isnt a grid solution, the most likely scenario is that the robots 
                    # are not close enough together to place down a subproblem
                    # in this case, we just allow the robts to continue on their paths and resolve 
                    # the conflict later
                    print("No grid solution found, proceeding with the current paths")
    
            
                         
    
            # dynamycs w.r.t robot frame
            # curr_state = np.array([0, 0, self.state[2], 0])
            curr_states = np.zeros((self.num_robots, 3))
            x_mpc, u_mpc = self.mpc.step(
                curr_states,
                targets,
                self.control
    
            
            # only the first one is used to advance the simulation
            # self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
    
            self.control = []
            for i in range(self.num_robots):
                self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
    
            # if len(self.all_conflicts) > 0:
            #     # update the reference paths for each robot
            #     if grid_solution:
            #         self.update_reference_paths()
    
            return x_mpc, self.control
    
        def update_reference_paths(self):
            """
            Update the reference paths for each robot.
            """
            # create copy of current self.paths
            import copy
            old_paths = copy.deepcopy(self.paths)
    
            self.paths = []
            for i in range(self.num_robots):
                # plan an RRT path from the current state to the goal
                x_start = (self.states[i][0], self.states[i][1])
                x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
                rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
                rrtstarpath2,tree = rrtstar2.run()
                rrtstarpath2 = list(reversed(rrtstarpath2))
                xs = []
                ys = []
                for node in rrtstarpath2:
                    xs.append(node[0])
                    ys.append(node[1])
    
                # Path from waypoint interpolation
                self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
    
    def main():
        import os
        import numpy as np
        import random
    
        # load the settings
        file_path = "settings_files/settings.yaml"
        import yaml
        with open(file_path, 'r') as file:
            settings = yaml.safe_load(file)
    
        seed = 1123
        print(f"***Setting Python Seed {seed}***")
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        random.seed(seed)
    
        target_vocity = 3.0 # m/s
    
        T = .5  # Prediction Horizon [s]
        DT = 0.1  # discretization step [s]
    
        x_start = (6, 2)  # Starting node
        x_goal = (6.5, 8)  # Goal node
    
        env = Env([0,10], [0,10], [], [])
    
    
        dynamics = Roomba(settings)
    
        rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
        rrtstarpath1,tree = rrtstar1.run()
        rrtstarpath1 = list(reversed(rrtstarpath1))
    
        xs = []
        ys = []
    
            xs.append(node[0])
            ys.append(node[1])
    
        wp_1 = [xs,ys]
    
    
        print(f"wp_1 = {wp_1}")
        # sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
        # x1,y1,h1 = sim.run(show_plots=False)
        # path1 = sim.path
    
        initial_pos_2 = np.array([6.0, 8.0, 4.8])
    
        target_vocity = 3.0 # m/s
    
    
    
        x_start = (6, 8)  # Starting node
        x_goal = (6.5, 2)  # Goal node
        rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
        rrtstarpath2,tree = rrtstar2.run()
        rrtstarpath2 = list(reversed(rrtstarpath2))
    
        xs = []
        ys = []
    
            xs.append(node[0])
            ys.append(node[1])
    
        wp_2 = [xs,ys]
    
    
        lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()    
    
        sim = MultiPathTrackerDatabase(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
        xs, ys, hs = sim.run(show_plots=False)
        paths = sim.paths
    
        print(f"path length here = {len(paths)}")