Newer
Older
from guided_mrmp.planners.singlerobot.RRTStar import RRTStar
rachelmoan
committed
from guided_mrmp.utils import Roomba
from guided_mrmp.utils import Conflict, Robot, Env
rachelmoan
committed
import numpy as np
import matplotlib.pyplot as plt
rachelmoan
committed
from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
from guided_mrmp.controllers.multi_mpc import MultiMPC
from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
from guided_mrmp.utils import Roomba
rachelmoan
committed
from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
rachelmoan
committed
def initialize_libraries(library_fnames=["guided_mrmp/database/2x3_library","guided_mrmp/database/3x3_library","guided_mrmp/database/5x2_library"]):
"""
Load the 2x3, 3x3, and 2x5 libraries. Store them in self.lib-x-
Inputs:
library_fnames - the folder containing the library files
"""
from guided_mrmp.utils.library import Library
# Create each of the libraries
print(f"Loading libraries. This usually takes about 10 seconds...")
lib_2x3 = Library(library_fnames[0])
lib_2x3.read_library_from_file()
lib_3x3 = Library(library_fnames[1])
lib_3x3.read_library_from_file()
rachelmoan
committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
lib_2x5 = Library(library_fnames[2])
lib_2x5.read_library_from_file()
return lib_2x3, lib_3x3, lib_2x5
class DiscreteRobot:
def __init__(self, start, goal, label):
self.start = start
self.goal = goal
self.current_position = start
self.label = label
class MultiPathTracker:
def __init__(self, env, initial_positions, dynamics, target_v, T, DT, waypoints, settings, lib_2x3, lib_3x3, lib_2x5):
"""
Initializes the PathTracker object.
Parameters:
- initial_positions: List of the initial positions of the robots [x, y, heading].
- dynamics: The dynamics model of the robots.
- target_v: The target velocity of the robots.
- T: The time horizon for the model predictive control (MPC).
- DT: The time step for the MPC.
- waypoints: A list of waypoints defining the desired path for each robot.
"""
# State of the robot [x,y, heading]
self.env = env
self.states = initial_positions
self.num_robots = len(initial_positions)
self.dynamics = dynamics
self.T = T
self.DT = DT
self.target_v = target_v
self.radius = dynamics.radius
self.update_ref_paths = False
# helper variable to keep track of mpc output
# starting condition is 0,0
self.control = np.zeros((self.num_robots, 2))
self.K = int(T / DT)
# For a car model
# Q = [20, 20, 10, 20] # state error cost
# Qf = [30, 30, 30, 30] # state final error cost
# R = [10, 10] # input cost
# P = [10, 10] # input rate of change cost
# self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P)
# libraries for the discrete solver
self.lib_2x3 = lib_2x3
self.lib_3x3 = lib_3x3
self.lib_2x5 = lib_2x5
# For a circular robot (easy dynamics)
Q = [40, 40, 0] # state error cost
Qf = [20,20, 0] # state final error cost
R = [10, 10] # input cost
P = [10, 10] # input rate of change cost
self.mpc = MultiMPC(self.num_robots, dynamics, T, DT, Q, Qf, R, P, settings['model_predictive_controller'], settings['environment']['circle_obstacles'])
self.circle_obs = settings['environment']['circle_obstacles']
# Path from waypoint interpolation
self.paths = []
for wp in waypoints:
self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
print(f"paths = {len(self.paths)}")
# Helper variables to keep track of the sim
self.sim_time = 0
self.x_history = [ [] for _ in range(self.num_robots) ]
self.y_history = [ [] for _ in range(self.num_robots) ]
self.v_history = [ [] for _ in range(self.num_robots) ]
self.h_history = [ [] for _ in range(self.num_robots) ]
self.a_history = [ [] for _ in range(self.num_robots) ]
self.d_history = [ [] for _ in range(self.num_robots) ]
self.optimized_trajectories_hist = [ [] for _ in range(self.num_robots) ]
self.optimized_trajectory = None
def trajectories_overlap(self, traj1, traj2, threshold):
"""
Checks if two trajectories overlap. We only care about xy positions.
Args:
traj1 (3xn numpy array): First trajectory. First row is x, second row is y, third row is heading.
traj2 (3xn numpy array): Second trajectory.
threshold (float): Distance threshold to consider a collision.
rachelmoan
committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
Returns:
bool: True if trajectories overlap, False otherwise.
"""
for i in range(traj1.shape[1]):
for j in range(traj2.shape[1]):
if np.linalg.norm(traj1[0:2, i] - traj2[0:2, j]) < 2*threshold:
return True
return False
def ego_to_global_roomba(self, state, mpc_out):
"""
Transforms optimized trajectory XY points from ego (robot) reference
into global (map) frame.
Args:
mpc_out (numpy array): Optimized trajectory points in ego reference frame.
Returns:
numpy array: Transformed trajectory points in global frame.
"""
# Extract x, y, and theta from the state
x = state[0]
y = state[1]
theta = state[2]
# Rotation matrix to transform points from ego frame to global frame
Rotm = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
# Initialize the trajectory array (only considering XY points)
trajectory = mpc_out[0:2, :]
# Apply rotation to the trajectory points
trajectory = Rotm.dot(trajectory)
rachelmoan
committed
# Translate the points to the robot's position in the global frame
trajectory[0, :] += x
trajectory[1, :] += y
rachelmoan
committed
return trajectory
def get_next_control(self, state, show_plots=False):
# optimization loop
# start=time.time()
# Get Reference_traj -> inputs are in worldframe
# 1. Get the reference trajectory for each robot
targets = []
for i in range(self.num_robots):
targets.append(get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT, len(self.x_history[i])+1))
# dynamycs w.r.t robot frame
# curr_state = np.array([0, 0, self.state[2], 0])
curr_states = np.zeros((self.num_robots, 3))
x_mpc, u_mpc = self.mpc.step(
curr_states,
targets,
self.control
rachelmoan
committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
# only the first one is used to advance the simulation
# self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
self.control = []
for i in range(self.num_robots):
self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
return x_mpc, self.control
def done(self):
for i in range(self.num_robots):
# print(f"state = {self.states[i]}")
# print(f"path = {self.paths[i][:, -1]}")
if (np.sqrt((self.states[i][0] - self.paths[i][0, -1]) ** 2 + (self.states[i][1] - self.paths[i][1, -1]) ** 2) > 1):
return False
return True
def plot_current_world_state(self):
"""
Plot the current state of the world.
"""
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# plot the ref path of each robot
for i in range(self.num_robots):
plt.plot(self.paths[i][0, :], self.paths[i][1, :], '--', color=colors[i])
# set the size of the plot to be 10x10
plt.xlim(0, 10)
plt.ylim(0, 10)
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def run(self, show_plots=False):
"""
Run the path tracker algorithm.
Parameters:
- show_plots (bool): Flag indicating whether to show plots during the simulation. Default is False.
Returns:
- numpy.ndarray: Array containing the history of x, y, and h coordinates.
"""
# Add the initial state to the histories
self.states = np.array(self.states)
for i in range(self.num_robots):
self.x_history[i].append(self.states[i, 0])
self.y_history[i].append(self.states[i, 1])
self.h_history[i].append(self.states[i, 2])
if show_plots: self.plot_sim()
self.plot_current_world_state()
while 1:
# check if all robots have reached their goal
if self.done():
print("Success! Goal Reached")
return np.asarray([self.x_history, self.y_history, self.h_history])
# plot the current state of the robots
self.plot_current_world_state()
# get the next control for all robots
x_mpc, controls = self.get_next_control(self.states)
next_states = []
for i in range(self.num_robots):
next_states.append(self.dynamics.next_state(self.states[i], controls[i], self.DT))
self.states = next_states
self.states = np.array(self.states)
for i in range(self.num_robots):
self.x_history[i].append(self.states[i, 0])
self.y_history[i].append(self.states[i, 1])
self.h_history[i].append(self.states[i, 2])
if self.update_ref_paths:
self.update_reference_paths()
self.update_ref_paths = False
# use the optimizer output to preview the predicted state trajectory
# self.optimized_trajectory = self.ego_to_global(x_mpc.value)
if show_plots: self.optimized_trajectory = self.ego_to_global_roomba(x_mpc)
if show_plots: self.plot_sim()
class MultiPathTrackerDatabase(MultiPathTracker):
def get_temp_starts_and_goals(self):
# the temporary starts are the current positions of the robots snapped to the grid
# based on the continuous space location of the robot, we find the cell in the grid that
# includes that continuous space location using the top left of the grid as a reference point
import math
temp_starts = []
for r in range(self.num_robots):
print(f"self.states = {self.states}")
x, y, theta = self.states[r]
cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
temp_starts.append([cell_x, cell_y])
# the temmporary goal is the point at the end of the robot's predicted traj
temp_goals = []
for r in range(self.num_robots):
traj = self.ego_to_global_roomba(self.states[r], self.trajs[r])
x = traj[0][-1]
y = traj[1][-1]
cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
temp_goals.append([cell_x,cell_y])
# self.starts = temp_starts
# self.goals = temp_goals
return temp_starts, temp_goals
def create_discrete_robots(self, starts, goals):
discrete_robots = []
for i in range(len(starts)):
start = starts[i]
goal = goals[i]
discrete_robots.append(DiscreteRobot(start, goal, i))
return discrete_robots
def get_discrete_solution(self, conflict, all_conflicts, grid):
# create an instance of a discrete solver
starts, goals = self.get_temp_starts_and_goals()
# print(f"temp starts = {starts}")
# print(f"temp goals = {goals}")
disc_robots = self.create_discrete_robots(starts, goals)
disc_conflict = []
for c in conflict:
disc_conflict.append(disc_robots[c])
disc_all_conflicts = []
for c in all_conflicts:
this_conflict = []
for i in c:
this_conflict.append(disc_robots[i])
disc_all_conflicts.append(this_conflict)
print(f"this conflict = {disc_conflict}")
print(f"all conflicts = {all_conflicts}")
# visualize the grid
self.draw_grid()
grid_solver = DiscreteResolver(disc_conflict, disc_robots, starts, goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
subproblem = grid_solver.find_subproblem()
if subproblem is None:
print("Couldn't find a discrete subproblem")
return None
# print(f"subproblem = {subproblem}")
grid_solution = grid_solver.solve_subproblem(subproblem)
# print(f"grid_solution = {grid_solution}")
return grid_solution
def get_initial_guess(self, grid_solution, num_robots, N, cp_dist):
# turn this solution into an initial guess
# turn this solution into an initial guess
initial_guess_state = np.zeros((num_robots*3, N+1))
# the initial guess for time is the length of the longest path in the solution
initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])
for i in range(num_robots):
print(f"Robot {i+1} solution:")
rough_points = np.array(grid_solution[i])
points = []
for point in rough_points:
if point[0] == -1: break
points.append(point)
points = np.array(points)
print(f"points = {points}")
smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
print(f"smoothed_curve = {smoothed_curve}")
# translate the smoothed curve so that the first point is at the current robot position
# smoothed_curve[:, 0] += current_robot_x_pos
# smoothed_curve[:, 1] += current_robot_y_pos
initial_guess_state[i*3, :] = (smoothed_curve[:, 0])*self.cell_size # x
initial_guess_state[i*3 + 1, :] = (smoothed_curve[:, 1])*self.cell_size # y
current_robot_x_pos = self.states[i][0]
current_robot_y_pos = self.states[i][1]
# translate the initial guess so that the first point is at (0,0)
initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]
# translate the initial guess so that the first point is at the current robot position
initial_guess_state[i*3, :] += current_robot_x_pos
initial_guess_state[i*3 + 1, :] += current_robot_y_pos + self.cell_size
headings = calculate_headings(smoothed_curve)
headings.append(headings[-1])
initial_guess_state[i*3 + 2, :] = headings
initial_guess_control = np.zeros((num_robots*2, N))
dt = initial_guess_T / N
change_in_position = []
for i in range(num_robots):
x = initial_guess_state[i*3, :] # x
y = initial_guess_state[i*3 + 1, :] # y
change_in_position = []
for j in range(len(x)-1):
pos1 = np.array([x[j], y[j]])
pos2 = np.array([x[j+1], y[j+1]])
change_in_position.append(np.linalg.norm(pos2 - pos1))
velocity = np.array(change_in_position) / dt
initial_guess_control[i*2, :] = velocity
# omega is the difference between consecutive headings
headings = initial_guess_state[i*3 + 2, :]
omega = np.diff(headings)
initial_guess_control[i*2 + 1, :] = omega
return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}
def place_grid(self, robot_locations):
"""
Given the locations of robots that need to be covered in continuous space, find
and place the grid. We don't need a very large grid to place subproblems, so
we will only place a grid of size self.grid_size x self.grid_size
inputs:
- robot_locations (list): locations of robots involved in conflict
outputs:
- grid (numpy array): The grid that we placed
- top_left (tuple): The top left corner of the grid in continuous space
"""
# Find the minimum and maximum x and y coordinates of the robot locations
self.min_x = min(robot_locations, key=lambda loc: loc[0])[0]
self.max_x = max(robot_locations, key=lambda loc: loc[0])[0]
self.min_y = min(robot_locations, key=lambda loc: loc[1])[1]
self.max_y = max(robot_locations, key=lambda loc: loc[1])[1]
# find the average x and y coordinates of the robot locations
avg_x = sum([loc[0] for loc in robot_locations]) / len(robot_locations)
avg_y = sum([loc[1] for loc in robot_locations]) / len(robot_locations)
self.temp_avg_x = avg_x
self.temp_avg_y = avg_y
print(f"avg_x = {avg_x}, avg_y = {avg_y}")
# Calculate the top left corner of the grid
# make it so that the grid is centered around the robots
self.cell_size = self.radius*3
self.grid_size = 5
print(f"avg_x = {avg_x} - {int(self.grid_size*self.cell_size/2)}")
print(f"avg_y = {avg_y} - {int(self.grid_size*self.cell_size/2)}")
self.top_left_grid = (avg_x - int(self.grid_size*self.cell_size/2), avg_y + int(self.grid_size*self.cell_size/2))
print(f"self.grid_size = {self.grid_size}")
print(f"top_left_grid = {self.top_left_grid}")
self.draw_grid()
# Check if, for every robot, the cell value of the start and the cell value
# of the goal are the same. If they are, then we can't find a discrete solution that
# will make progress.
all_starts_goals_equal = self.all_starts_goals_equal()
import copy
original_top_left = copy.deepcopy(self.top_left_grid)
x_shift = [-5,5]
y_shift = [-5,5]
for x in np.arange(x_shift[0], x_shift[1],.5):
y =0
# print(f"x = {x}, y = {y}")
self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
all_starts_goals_equal = self.all_starts_goals_equal()
# self.draw_grid()
if not all_starts_goals_equal: break
if all_starts_goals_equal:
for y in np.arange(y_shift[0], y_shift[1],.5):
x =0
# print(f"x = {x}, y = {y}")
self.top_left_grid = (original_top_left[0] + x*self.cell_size*.5, original_top_left[1] - y*self.cell_size*.5)
all_starts_goals_equal = self.all_starts_goals_equal()
# self.draw_grid()
if not all_starts_goals_equal: break
print(f"updated top_left_grid = {self.top_left_grid}")
# self.draw_grid()
if all_starts_goals_equal:
print("All starts and goals are equal")
return None
grid = self.get_obstacle_map()
return grid
def get_obstacle_map(self):
"""
Create a map of the environment with obstacles
"""
# create a grid of size self.grid_size x self.grid_size
grid = np.zeros((self.grid_size, self.grid_size))
# check if there are any obstacles in any of the cells
grid = np.zeros((self.grid_size, self.grid_size))
for i in range(self.grid_size):
for j in range(self.grid_size):
x, y = self.get_grid_cell_location(i, j)
for obs in []:
# for obs in self.circle_obs:
if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2] + self.radius:
grid[j, i] = 1
break
return grid
def get_grid_cell(self, x, y):
"""
Given a continuous space x and y, find the cell in the grid that includes that location
"""
import math
# find the closest grid cell that is not an obstacle
cell_x = min(max(math.floor((x - self.top_left_grid[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((self.top_left_grid[1] - y) / self.cell_size), 0), self.grid_size - 1)
return cell_x, cell_y
def get_grid_cell_location(self, cell_x, cell_y):
"""
Given a cell in the grid, find the center of that cell in continuous space
"""
x = self.top_left_grid[0] + (cell_x + 0.5) * self.cell_size
y = self.top_left_grid[1] - (cell_y + 0.5) * self.cell_size
return x, y
def plot_trajs(self, traj1, traj2, radius):
"""
Plot the trajectories of two robots.
"""
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
for i in range(traj1.shape[1]):
circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle1)
for i in range(traj2.shape[1]):
circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle2)
# set the size of the plot to be 10x10
plt.xlim(0, 10)
plt.ylim(0, 10)
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def draw_grid(self):
starts, goals = self.get_temp_starts_and_goals()
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
for i in range(self.grid_size + 1):
# Draw vertical lines
plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size],
[self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
# Draw horizontal lines
plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size],
[self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(0, 10)
plt.ylim(0, 10)
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def draw_grid_solution(self, state):
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(self.x_history[i][-1], self.y_history[i][-1], self.h_history[i][-1], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
for i in range(self.grid_size + 1):
# Draw vertical lines
plt.plot([self.top_left_grid[0] + i * self.cell_size, self.top_left_grid[0] + i * self.cell_size],
[self.top_left_grid[1], self.top_left_grid[1] - self.grid_size * self.cell_size], 'k-')
# Draw horizontal lines
plt.plot([self.top_left_grid[0], self.top_left_grid[0] + self.grid_size * self.cell_size],
[self.top_left_grid[1] - i * self.cell_size, self.top_left_grid[1] - i * self.cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
for i in range(self.num_robots):
x = state[i*3, :]
y = state[i*3 + 1, :]
plt.plot(x, y, 'x', color=colors[i])
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(self.states[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(0, 10)
plt.ylim(0, 10)
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
# title
plt.title("Discrete Solution")
plt.show()
def all_starts_goals_equal(self):
"""
Check if, for every robot, the cell value of the start and the cell value
of the goal are the same.
"""
all_starts_goals_equal = True
for r in range(self.num_robots):
start = self.states[r]
traj = self.ego_to_global_roomba(start, self.trajs[r])
goal = [traj[0, -1], traj[1, -1]]
start_cell = self.get_grid_cell(start[0], start[1])
goal_cell = self.get_grid_cell(goal[0], goal[1])
if start_cell != goal_cell:
all_starts_goals_equal = False
break
return all_starts_goals_equal
def get_next_control(self, state, show_plots=False):
# optimization loop
# start=time.time()
self.update_ref_paths = False
# Get Reference_traj -> inputs are in worldframe
# 1. Get the reference trajectory for each robot
targets = []
for i in range(self.num_robots):
ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
print(f"Robot {i} reference trajectory = {ref}")
targets.append(ref)
self.trajs = targets
# 2. Check if the targets of any two robots overlap
self.all_conflicts = []
for i in range(self.num_robots):
for j in range(i + 1, self.num_robots):
print(f"targets[i] = {targets[i]}")
traj1 = self.ego_to_global_roomba(state[i], targets[i])
traj2 = self.ego_to_global_roomba(state[j], targets[j])
if self.trajectories_overlap(traj1, traj2, self.radius):
# plot the trajectories
self.plot_trajs(traj1, traj2, self.radius)
print(f"Collision detected between robot {i} and robot {j}")
self.all_conflicts.append((i, j))
for c in self.all_conflicts:
# 3. If they do collide, then reroute the reference trajectories of these robots
# Get the robots involved in the conflict
robots = c
robot_positions = [state[i] for i in robots]
# Put down a local grid
self.grid = self.place_grid(robot_positions)
# set the starts (robots' current positions)
self.starts = []
self.goals = []
for i in range(self.num_robots):
self.starts.append(self.states[i])
traj = self.ego_to_global_roomba(self.states[i], self.trajs[i])
x = traj[0][-1]
y = traj[1][-1]
self.goals.append([x,y])
# Solve a discrete version of the problem
# Find a subproblem and solve it
grid_solution = self.get_discrete_solution(c, [c],self.grid)
if grid_solution:
self.update_ref_paths = False
initial_guess = self.get_initial_guess(grid_solution, self.num_robots, 20, 1)
initial_guess_state = initial_guess['X']
self.draw_grid_solution(initial_guess_state)
print(f"initial_guess_state shape = {initial_guess_state.shape}")
print(f"initial_guess_state = {initial_guess_state}")
# for each robot in conflict, reroute its reference trajectory to match the grid solution
num_robots_in_conflict = len(c)
import copy
old_paths = copy.deepcopy(self.paths)
self.paths = []
for i in range(num_robots_in_conflict):
r = c[i]
new_ref = initial_guess_state[i*3:i*3+3, :]
print(f"Robot {r} rerouting to {new_ref}")
# plan from the last point of the ref path to the robot's goal
# plan an RRT path from the current state to the goal
x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
print(f"x_start = {x_start}, x_goal = {x_goal}")
rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = new_ref[0, :].tolist()
ys = new_ref[1, :].tolist()
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp = [xs,ys]
# Path from waypoint interpolation
self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
targets = []
for i in range(self.num_robots):
ref = get_ref_trajectory(np.array(state[i]), np.array(self.paths[i]), self.target_v, self.T, self.DT,0)
print(f"Robot {i} reference trajectory = {ref}")
targets.append(ref)
self.trajs = targets
if grid_solution is None:
# if there isnt a grid solution, the most likely scenario is that the robots
# are not close enough together to place down a subproblem
# in this case, we just allow the robts to continue on their paths and resolve
# the conflict later
print("No grid solution found, proceeding with the current paths")
# dynamycs w.r.t robot frame
# curr_state = np.array([0, 0, self.state[2], 0])
curr_states = np.zeros((self.num_robots, 3))
x_mpc, u_mpc = self.mpc.step(
curr_states,
targets,
self.control
rachelmoan
committed
# only the first one is used to advance the simulation
# self.control[:] = [u_mpc[0, 0], u_mpc[1, 0]]
self.control = []
for i in range(self.num_robots):
self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
# if len(self.all_conflicts) > 0:
# # update the reference paths for each robot
# if grid_solution:
# self.update_reference_paths()
return x_mpc, self.control
rachelmoan
committed
def update_reference_paths(self):
"""
Update the reference paths for each robot.
"""
# create copy of current self.paths
import copy
old_paths = copy.deepcopy(self.paths)
rachelmoan
committed
self.paths = []
for i in range(self.num_robots):
# plan an RRT path from the current state to the goal
x_start = (self.states[i][0], self.states[i][1])
x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 1000, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = []
ys = []
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
rachelmoan
committed
wp = [xs,ys]
rachelmoan
committed
# Path from waypoint interpolation
self.paths.append(compute_path_from_wp(wp[0], wp[1], 0.05))
def main():
import os
import numpy as np
import random
# load the settings
file_path = "settings_files/settings.yaml"
import yaml
with open(file_path, 'r') as file:
settings = yaml.safe_load(file)
seed = 1123
print(f"***Setting Python Seed {seed}***")
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
rachelmoan
committed
initial_pos_1 = np.array([6.0, 2.0, 2.2])
rachelmoan
committed
T = .5 # Prediction Horizon [s]
DT = 0.1 # discretization step [s]
rachelmoan
committed
x_start = (6, 2) # Starting node
x_goal = (6.5, 8) # Goal node
env = Env([0,10], [0,10], [], [])
rachelmoan
committed
dynamics = Roomba(settings)
rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath1,tree = rrtstar1.run()
rrtstarpath1 = list(reversed(rrtstarpath1))
rachelmoan
committed
for node in rrtstarpath1:
print(node)
print()
xs.append(node[0])
ys.append(node[1])
wp_1 = [xs,ys]
rachelmoan
committed
print(f"wp_1 = {wp_1}")
# sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
# x1,y1,h1 = sim.run(show_plots=False)
# path1 = sim.path
rachelmoan
committed
initial_pos_2 = np.array([6.0, 8.0, 4.8])
rachelmoan
committed
x_start = (6, 8) # Starting node
x_goal = (6.5, 2) # Goal node
rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
rachelmoan
committed
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp_2 = [xs,ys]
rachelmoan
committed
lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()
rachelmoan
committed
sim = MultiPathTrackerDatabase(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
xs, ys, hs = sim.run(show_plots=False)
paths = sim.paths
rachelmoan
committed
print(f"path length here = {len(paths)}")