Newer
Older
from guided_mrmp.planners.RRTStar import RRTStar
from guided_mrmp.utils import Roomba
from guided_mrmp.utils import Conflict, Robot, Env
import numpy as np
import matplotlib.pyplot as plt
from guided_mrmp.controllers.multi_path_tracking import MultiPathTracker
from guided_mrmp.controllers.utils import compute_path_from_wp, get_ref_trajectory
from guided_mrmp.conflict_resolvers.discrete_resolver import DiscreteResolver
from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
from guided_mrmp.utils.helpers import initialize_libraries
from guided_mrmp.controllers.place_grid import place_grid
class DiscreteRobot:
def __init__(self, start, goal, label):
self.start = start
self.goal = goal
self.current_position = start
self.label = label
def plot_roomba(x, y, yaw, color, fill, radius):
"""
Args:
x ():
y ():
yaw ():
"""
fig = plt.gcf()
ax = fig.gca()
if fill: alpha = .3
else: alpha = 1
circle = plt.Circle((x, y), radius, color=color, fill=fill, alpha=alpha)
ax.add_patch(circle)
# Plot direction marker
dx = 1 * np.cos(yaw)
dy = 1 * np.sin(yaw)
ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.1, fc='r', ec='r')
class MultiPathTrackerDB(MultiPathTracker):
def get_temp_starts_and_goals(self, state, grid_origin):
# the temporary starts are the current positions of the robots snapped to the grid
# based on the continuous space location of the robot, we find the cell in the grid that
# includes that continuous space location using the top left of the grid as a reference point
import math
temp_starts = []
for r in range(self.num_robots):
x, y, theta = state[r]
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
temp_starts.append([cell_x, cell_y])
# the temmporary goal is the point at the end of the robot's predicted traj
temp_goals = []
for r in range(self.num_robots):
traj = self.ego_to_global_roomba(state[r], self.trajs[r])
x = traj[0][-1]
y = traj[1][-1]
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y- grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
temp_goals.append([cell_x,cell_y])
return temp_starts, temp_goals
def create_discrete_robots(self, starts, goals):
discrete_robots = []
for i in range(len(starts)):
start = starts[i]
goal = goals[i]
discrete_robots.append(DiscreteRobot(start, goal, i))
return discrete_robots
def get_discrete_solution(self, state, conflict, all_conflicts, grid, grid_origin):
"""
Inputs:
- conflict (list): list of robot idxs involved in the conflict
- all_conflicts (list): list of all conflicts
- grid (bool array): the obstacle map of grid that we placed
- grid_origin (tuple): the top left corner of the grid in continuous space
"""
starts, goals = self.get_temp_starts_and_goals(state, grid_origin)
rachelmoan
committed
# get the starts and goals of ONLY the robots in conflict
conflict_starts = [starts[c] for c in conflict]
conflict_goals = [goals[c] for c in conflict]
# create a "discrete" version of the robot, i.e. the
# format that the discrete solver expects to receive
disc_robots = self.create_discrete_robots(starts, goals)
disc_conflict = []
for c in conflict:
disc_conflict.append(disc_robots[c])
disc_all_conflicts = []
for c in all_conflicts:
this_conflict = []
for i in c:
this_conflict.append(disc_robots[i])
disc_all_conflicts.append(this_conflict)
rachelmoan
committed
grid_solver = DiscreteResolver(disc_conflict, disc_robots, conflict_starts, conflict_goals, disc_all_conflicts,grid, self.lib_2x3, self.lib_3x3, self.lib_2x5)
subproblem = grid_solver.find_subproblem()
if subproblem is None:
print("Couldn't find a discrete subproblem")
return None
grid_solution = grid_solver.solve_subproblem(subproblem)
return grid_solution
def get_initial_guess(self, state, grid_solution, num_robots, N, cp_dist):
# turn this solution into an initial guess
initial_guess_state = np.zeros((num_robots*3, N+1))
# the initial guess for time is the length of the longest path in the solution
initial_guess_T = 2*max([len(grid_solution[i]) for i in range(num_robots)])
for i in range(num_robots):
rough_points = np.array(grid_solution[i])
points = []
for point in rough_points:
if point[0] == -1: break
# append the point mutiplied by the cell size
points.append([point[0]*self.cell_size, point[1]*self.cell_size])
points = np.array(points)
smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
initial_guess_state[i*3, :] = smoothed_curve[:, 0] # x
initial_guess_state[i*3 + 1, :] = smoothed_curve[:, 1] # y
current_robot_x_pos = state[i][0]
current_robot_y_pos = state[i][1]
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# translate the initial guess so that the first point is at (0,0)
initial_guess_state[i*3, :] -= initial_guess_state[i*3, 0]
initial_guess_state[i*3 + 1, :] -= initial_guess_state[i*3+1, 0]
# translate the initial guess so that the first point is at the current robot position
initial_guess_state[i*3, :] += current_robot_x_pos
initial_guess_state[i*3 + 1, :] += current_robot_y_pos
headings = calculate_headings(smoothed_curve)
headings.append(headings[-1])
initial_guess_state[i*3 + 2, :] = headings
initial_guess_control = np.zeros((num_robots*2, N))
dt = initial_guess_T / N
change_in_position = []
for i in range(num_robots):
x = initial_guess_state[i*3, :] # x
y = initial_guess_state[i*3 + 1, :] # y
change_in_position = []
for j in range(len(x)-1):
pos1 = np.array([x[j], y[j]])
pos2 = np.array([x[j+1], y[j+1]])
change_in_position.append(np.linalg.norm(pos2 - pos1))
velocity = np.array(change_in_position) / dt
initial_guess_control[i*2, :] = velocity
# omega is the difference between consecutive headings
headings = initial_guess_state[i*3 + 2, :]
omega = np.diff(headings)
initial_guess_control[i*2 + 1, :] = omega
return {'X': initial_guess_state, 'U': initial_guess_control, 'T': initial_guess_T}
rachelmoan
committed
def get_obstacle_map(self, grid_origin, grid_size, radius):
"""
Create a map of the environment with obstacles
"""
# create a grid of size self.grid_size x self.grid_size
rachelmoan
committed
grid = np.zeros((grid_size, grid_size))
# check if there are any obstacles in any of the cells
rachelmoan
committed
grid = np.zeros((grid_size, grid_size))
for i in range(grid_size):
for j in range(grid_size):
x, y = self.get_grid_cell_location(i, j, grid_origin)
rachelmoan
committed
for obs in self.circle_obs:
if np.linalg.norm(np.array([x, y]) - np.array(obs[:2])) < obs[2]:
grid[j, i] = 1
break
return grid
def get_grid_cell(self, x, y, grid_origin):
"""
Given a continuous space x and y, find the cell in the grid that includes that location
"""
import math
# find the closest grid cell that is not an obstacle
cell_x = min(max(math.floor((x - grid_origin[0]) / self.cell_size), 0), self.grid_size - 1)
cell_y = min(max(math.floor((y - grid_origin[1]) / self.cell_size), 0), self.grid_size - 1)
return cell_x, cell_y
def get_grid_cell_location(self, cell_x, cell_y, grid_origin):
"""
Given a cell in the grid, find the center of that cell in continuous space
"""
x = grid_origin[0] + (cell_x + 0.5) * self.cell_size
y = grid_origin[1] + (cell_y + 0.5) * self.cell_size
return x, y
def plot_trajs(self, state, traj1, traj2, radius):
"""
Plot the trajectories of two robots.
"""
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
for i in range(traj1.shape[1]):
circle1 = plt.Circle((traj1[0, i], traj1[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle1)
for i in range(traj2.shape[1]):
circle2 = plt.Circle((traj2[0, i], traj2[1, i]), radius, color='k', fill=False)
plt.gca().add_artist(circle2)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
def draw_grid(self, state, grid_origin, cell_size, grid_size):
"""
inputs:
- state (list): list of robot states
- grid_origin (tuple): top left corner of the grid
"""
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
# Draw vertical lines
plt.plot([grid_origin[0] + i * cell_size, grid_origin[0] + i * cell_size],
[grid_origin[1], grid_origin[1] + grid_size * cell_size], 'k-')
# Draw horizontal lines
plt.plot([grid_origin[0], grid_origin[0] + grid_size * cell_size],
[grid_origin[1] + i * cell_size, grid_origin[1] + i * cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
rachelmoan
committed
def draw_grid_solution(self, initial_guess, state, grid_origin, robots_in_conflict):
"""
params:
- initial_guess (dict): the initial guess for the optimization problem
- state (list): list of robot states
- grid_origin (tuple): top left corner of the grid
- num_robots (int): number of robots that are in conflict
"""
# draw the whole environment with the local grid drawn on top
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Plot the current state of each robot using the most recent values from
# x_history, y_history, and h_history
colors = cm.rainbow(np.linspace(0, 1, self.num_robots))
for i in range(self.num_robots):
plot_roomba(state[i][0], state[i][1], state[i][2], colors[i], False, self.radius)
# plot the goal of each robot with solid circle
for i in range(self.num_robots):
x, y, theta = self.paths[i][:, -1]
plt.plot(x, y, 'o', color=colors[i])
circle1 = plt.Circle((x, y), self.radius, color=colors[i], fill=False)
plt.gca().add_artist(circle1)
# draw the horizontal and vertical lines of the grid
for i in range(self.grid_size + 1):
# Draw vertical lines
plt.plot([grid_origin[0] + i * self.cell_size, grid_origin[0] + i * self.cell_size],
[grid_origin[1], grid_origin[1] + self.grid_size * self.cell_size], 'k-')
# Draw horizontal lines
plt.plot([grid_origin[0], grid_origin[0] + self.grid_size * self.cell_size],
[grid_origin[1] + i * self.cell_size, grid_origin[1] + i * self.cell_size], 'k-')
# draw the obstacles
for obs in self.circle_obs:
circle = plt.Circle((obs[0], obs[1]), obs[2], color='red', fill=False)
plt.gca().add_artist(circle)
rachelmoan
committed
# for i in range(num_robots):
for i, robot_idx in enumerate(range(robots_in_conflict)):
x = initial_guess[robot_idx*3, :]
y = initial_guess[robot_idx*3 + 1, :]
plt.plot(x, y, 'x', color=colors[i])
# plot the robots' continuous space subgoals
for idx in range(self.num_robots):
traj = self.ego_to_global_roomba(state[idx], self.trajs[idx])
x = traj[0][-1]
y = traj[1][-1]
plt.plot(x, y, '^', color=colors[idx])
circle1 = plt.Circle((x, y), self.radius, color=colors[idx], fill=False)
plt.gca().add_artist(circle1)
# set the size of the plot to be 10x10
plt.xlim(self.x_range[0], self.x_range[1])
plt.xlim(self.y_range[0], self.y_range[1])
# force equal aspect ratio
plt.gca().set_aspect('equal', adjustable='box')
# title
plt.title("Discrete Solution")
plt.show()
def starts_equal(self, state, grid_origin):
Check if the start cells of any two robots are the same
for i in range(self.num_robots):
for j in range(i + 1, self.num_robots):
start_i = state[i]
start_j = state[j]
cell_i = self.get_grid_cell(start_i[0], start_i[1], grid_origin)
cell_j = self.get_grid_cell(start_j[0], start_j[1], grid_origin)
if cell_i == cell_j:
return True
return False
def advance(self, state, show_plots=False):
u_next = [[] for _ in range(self.num_robots)]
x_next = [[] for _ in range(self.num_robots)]
# 1. Get the reference trajectory for each robot
targets = []
for i in range(self.num_robots):
ref, visited_guide_points = get_ref_trajectory(np.array(state[i]),
np.array(self.paths[i]),
self.target_v,
self.T,
self.DT,
self.visited_points_on_guide_paths[i] = visited_guide_points
targets.append(ref)
self.trajs = targets
curr_state = np.array([0,0,0])
for i in range(self.num_robots):
x_mpc, u_mpc = self.mpc.step(
curr_state,
targets[i],
self.control[i]
)
u_next[i] = [u_mpc[0, 0], u_mpc[1, 0]]
x_next[i] = x_mpc
# 2. Check if the targets of any two robots overlap
all_conflicts = []
for i in range(self.num_robots):
traj1 = self.ego_to_global_roomba(state[i], targets[i])
this_robot_conflicts = [i]
for j in range(i + 1, self.num_robots):
traj2 = self.ego_to_global_roomba(state[j], targets[j])
if self.trajectories_overlap(traj1, traj2, self.radius):
# plot the trajectories of the robots that are in conflict
if show_plots: self.plot_trajs(state, traj1, traj2, self.radius)
this_robot_conflicts.append(j)
if len(this_robot_conflicts) > 1:
all_conflicts.append(this_robot_conflicts)
for c in all_conflicts:
# 3. If they do collide, then reroute the reference trajectories of these robots
# Get the robots involved in the conflict
rachelmoan
committed
for i in (c):
# get the largest x and y difference between the robots in conflict
x_diff = max([abs(robot_positions[i][0] - robot_positions[j][0]) for i in c for j in c])
y_diff = max([abs(robot_positions[i][1] - robot_positions[j][1]) for i in c for j in c])
diff = max(x_diff, y_diff)
# Put down a local grid
self.cell_size = self.radius*3
self.grid_size = 5
if diff < 4*self.cell_size:
grid_origin, centers = place_grid(robot_positions, cell_size=self.radius*3)
grid_obstacle_map = self.get_obstacle_map(grid_origin, self.grid_size, self.radius)
if show_plots: self.draw_grid(state, grid_origin, self.cell_size, 5)
# Solve a discrete version of the problem
# Find a subproblem and solve it
grid_solution = self.get_discrete_solution(state, c, all_conflicts, grid_obstacle_map, grid_origin)
if grid_solution:
print(f"Grid Solution: {grid_solution}")
# if we found a grid solution, we can use it to reroute the robots
initial_guess = self.get_initial_guess(state, grid_solution, len(c), 20, 0.0)
initial_guess_state = initial_guess['X']
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
if show_plots: self.draw_grid_solution(initial_guess_state, state, grid_origin, len(c))
# for each robot in conflict, reroute its reference trajectory to match the grid solution
import copy
old_paths = copy.deepcopy(self.paths)
# self.paths = []
# for i in range(num_robots_in_conflict):
for i, robot_idx in enumerate(c):
new_ref = initial_guess_state[robot_idx*3:robot_idx*3+3, :]
# plan from the last point of the ref path to the robot's goal
# plan an RRT path from the current state to the goal
x_start = (new_ref[:, -1][0], new_ref[:, -1][1])
x_goal = (old_paths[i][:, -1][0], old_paths[i][:, -1][1])
rrtstar2 = RRTStar(self.env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = new_ref[0, :].tolist()
ys = new_ref[1, :].tolist()
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp = [xs,ys]
# Path from waypoint interpolation
self.paths[i] = compute_path_from_wp(wp[0], wp[1], 0.05)
targets = []
for i in range(self.num_robots):
ref, visited_guide_points = get_ref_trajectory(np.array(state[i]),
np.array(self.paths[i]),
self.target_v,
self.T,
self.DT,
[])
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
self.visited_points_on_guide_paths[i] = visited_guide_points
targets.append(ref)
self.trajs = targets
curr_state = np.array([0,0,0])
for i in range(self.num_robots):
x_mpc, u_mpc = self.mpc.step(
curr_state,
targets[i],
self.control[i]
)
u_next[i] = [u_mpc[0, 0], u_mpc[1, 0]]
x_next[i] = x_mpc
if grid_solution is None:
# if there isnt a grid solution, the most likely scenario is that the robots
# are not close enough together to place down a subproblem
# in this case, we just allow the robts to continue on their paths and resolve
# the conflict later
print("No grid solution found, proceeding with the current paths")
# TODO: This should call coupled MPC to resolve the conflict
# dynamycs w.r.t robot frame
curr_states = np.zeros((self.num_robots, 3))
x_mpc, u_mpc = self.coupled_mpc.step(
curr_states,
targets,
self.control
)
for i in c:
u_next[i] = [u_mpc[i*2, 0], u_mpc[i*2+1, 0]]
x_next[i] = x_mpc[i]
else:
print("The robots are too far apart to place a grid")
print("Proceeding with the current paths")
# only the first one is used to advance the simulation
# self.control = []
# for i in range(self.num_robots):
# self.control.append([u_mpc[i*2, 0], u_mpc[i*2+1, 0]])
self.control = u_next
def main():
import os
import numpy as np
import random
# load the settings
file_path = "settings_files/settings.yaml"
import yaml
with open(file_path, 'r') as file:
settings = yaml.safe_load(file)
seed = 1123
print(f"***Setting Python Seed {seed}***")
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
initial_pos_1 = np.array([6.0, 2.0, 5.2])
target_vocity = 3.0 # m/s
T = .5 # Prediction Horizon [s]
DT = 0.1 # discretization step [s]
x_start = (6, 2) # Starting node
x_goal = (6.5, 8) # Goal node
env = Env([0,10], [0,10], [], [])
dynamics = Roomba(settings)
rrtstar1 = RRTStar(env, x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath1,tree = rrtstar1.run()
rrtstarpath1 = list(reversed(rrtstarpath1))
xs = []
ys = []
for node in rrtstarpath1:
print(node)
print()
xs.append(node[0])
ys.append(node[1])
wp_1 = [xs,ys]
start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
initial_pos_1 = [initial_pos_1[0], initial_pos_1[1], start_heading]
print(f"wp_1 = {wp_1}")
# sim = PathTracker(initial_position=initial_pos_1, dynamics=dynamics,target_v=target_vocity, T=T, DT=DT, waypoints=wp_1, settings=settings)
# x1,y1,h1 = sim.run(show_plots=False)
# path1 = sim.path
initial_pos_2 = np.array([6.0, 8.0, 1.5])
target_vocity = 3.0 # m/s
x_start = (6, 8) # Starting node
x_goal = (6.5, 2) # Goal node
rrtstar2 = RRTStar(env,x_start, x_goal, 0.5, 0.05, 500, r=2.0)
rrtstarpath2,tree = rrtstar2.run()
rrtstarpath2 = list(reversed(rrtstarpath2))
xs = []
ys = []
for node in rrtstarpath2:
xs.append(node[0])
ys.append(node[1])
wp_2 = [xs,ys]
start_heading = np.arctan2(ys[1] - x_start[1], xs[1] - x_start[0])
initial_pos_2 = [initial_pos_2[0], initial_pos_2[1], start_heading]
lib_2x3, lib_3x3, lib_2x5 = initialize_libraries()
sim = MultiPathTrackerDB(env, [initial_pos_1, initial_pos_2], dynamics, target_vocity, T, DT, [wp_1, wp_2], settings, lib_2x3, lib_3x3, lib_2x5)
xs, ys, hs = sim.run(show_plots=False)
paths = sim.paths
print(f"path length here = {len(paths)}")
# plot(xs, ys, hs, paths, [rrtstar1.sampled_vertices, rrtstar2.sampled_vertices],2)
# plot_sim(xs, ys, hs, paths)
if __name__ == "__main__":
main()