Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
experiment-control
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
whuie2
experiment-control
Commits
fe8eea7e
Commit
fe8eea7e
authored
3 years ago
by
whooie
Browse files
Options
Downloads
Patches
Plain Diff
adjust ROI for new Flir camera setup
parent
80145555
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lib/imaging.py
+20
-14
20 additions, 14 deletions
lib/imaging.py
with
20 additions
and
14 deletions
lib/imaging.py
+
20
−
14
View file @
fe8eea7e
...
@@ -11,11 +11,15 @@ import toml
...
@@ -11,11 +11,15 @@ import toml
import
warnings
import
warnings
import
PIL.Image
import
PIL.Image
import
lib.plotdefs
as
pd
import
lib.plotdefs
as
pd
from
lib.plotdefs
import
S
import
lib.dataio
as
io
import
lib.dataio
as
io
H
=
6.626070040e-34
H
=
6.626070040e-34
C
=
2.99792458e+8
C
=
2.99792458e+8
ROI
=
[
932
,
729
,
155
,
125
]
# [x, y, w, h]
ROI_s
=
(
S
[
ROI
[
1
]:
ROI
[
1
]
+
ROI
[
3
]],
S
[
ROI
[
0
]:
ROI
[
0
]
+
ROI
[
2
]])
DEF_DX
=
3.45
# pixel size for Flir Grasshopper [um]
DEF_DX
=
3.45
# pixel size for Flir Grasshopper [um]
class
ImagingData
:
class
ImagingData
:
...
@@ -219,12 +223,13 @@ class FluorescenceData(ImagingData):
...
@@ -219,12 +223,13 @@ class FluorescenceData(ImagingData):
def
compute_mot_number
(
image
,
QE
,
gain
,
exposure_time
,
solid_angle
,
def
compute_mot_number
(
image
,
QE
,
gain
,
exposure_time
,
solid_angle
,
detuning
,
intensity_parameter
,
k
=
None
):
detuning
,
intensity_parameter
,
k
=
None
):
H
,
W
=
image
.
shape
# H, W = image.shape
K_h
=
3.0
# K_h = 3.0
slice_h
=
pd
.
S
[
int
(
H
/
K_h
)
:
int
((
K_h
-
1
)
*
H
/
K_h
)]
# slice_h = S[int(H / K_h) : int((K_h - 1) * H / K_h)]
K_w
=
3.0
# K_w = 3.0
slice_w
=
pd
.
S
[
int
(
W
/
K_w
)
:
int
((
K_w
-
1
)
*
W
/
K_w
)]
# slice_w = S[int(W / K_w) : int((K_w - 1) * W / K_w)]
im
=
image
[
slice_h
,
slice_w
]
# im = image[slice_h, slice_w]
im
=
image
[
ROI_s
]
if
k
is
not
None
:
if
k
is
not
None
:
pd
.
Plotter
().
imshow
(
image
).
savefig
(
f
"
image_
{
k
}
.png
"
).
close
()
pd
.
Plotter
().
imshow
(
image
).
savefig
(
f
"
image_
{
k
}
.png
"
).
close
()
pd
.
Plotter
().
imshow
(
im
).
savefig
(
f
"
img_
{
k
}
.png
"
).
close
()
pd
.
Plotter
().
imshow
(
im
).
savefig
(
f
"
img_
{
k
}
.png
"
).
close
()
...
@@ -244,7 +249,7 @@ def compute_mot_number(image, QE, gain, exposure_time, solid_angle,
...
@@ -244,7 +249,7 @@ def compute_mot_number(image, QE, gain, exposure_time, solid_angle,
N
=
photon_rate
/
scatter_rate
(
detuning
,
intensity_parameter
)
N
=
photon_rate
/
scatter_rate
(
detuning
,
intensity_parameter
)
return
N
return
N
def
lls_fit_gaussian
(
A
,
dA
,
k
=
None
):
def
lls_fit_gaussian
(
A
,
dA
,
k
=
None
):
# deprecated
"""
"""
Assumes uniform, square dA.
Assumes uniform, square dA.
"""
"""
...
@@ -274,16 +279,17 @@ def lmfit_gaussian(data, dA, k=None):
...
@@ -274,16 +279,17 @@ def lmfit_gaussian(data, dA, k=None):
"""
"""
Assumes uniform, square dA.
Assumes uniform, square dA.
"""
"""
i0
,
j0
=
[
k
//
2
for
k
in
data
.
shape
]
D
=
data
[
ROI_s
]
i0
,
j0
=
[
k
//
2
for
k
in
D
.
shape
]
x0
=
np
.
sqrt
(
dA
)
*
j0
x0
=
np
.
sqrt
(
dA
)
*
j0
x
=
np
.
sqrt
(
dA
)
*
np
.
arange
(
data
.
shape
[
1
])
x
=
np
.
sqrt
(
dA
)
*
np
.
arange
(
D
.
shape
[
1
])
y0
=
np
.
sqrt
(
dA
)
*
i0
y0
=
np
.
sqrt
(
dA
)
*
i0
y
=
np
.
sqrt
(
dA
)
*
np
.
arange
(
data
.
shape
[
0
])
y
=
np
.
sqrt
(
dA
)
*
np
.
arange
(
D
.
shape
[
0
])
X
,
Y
=
np
.
meshgrid
(
x
,
y
)
X
,
Y
=
np
.
meshgrid
(
x
,
y
)
downsample
=
1
0
downsample
=
1
sampler
=
pd
.
S
[::
downsample
]
sampler
=
S
[::
downsample
]
_
data
=
data
[
sampler
,
sampler
]
_
D
=
D
[
sampler
,
sampler
]
_X
=
X
[
sampler
,
sampler
]
_X
=
X
[
sampler
,
sampler
]
_Y
=
Y
[
sampler
,
sampler
]
_Y
=
Y
[
sampler
,
sampler
]
...
@@ -298,7 +304,7 @@ def lmfit_gaussian(data, dA, k=None):
...
@@ -298,7 +304,7 @@ def lmfit_gaussian(data, dA, k=None):
def
residual
(
params
:
lmfit
.
Parameters
):
def
residual
(
params
:
lmfit
.
Parameters
):
m
=
model
(
params
)
m
=
model
(
params
)
return
((
_
data
-
m
)
**
2
).
flatten
()
return
((
_
D
-
m
)
**
2
).
flatten
()
params
=
lmfit
.
Parameters
()
params
=
lmfit
.
Parameters
()
params
.
add
(
"
A
"
,
value
=
data
.
max
())
params
.
add
(
"
A
"
,
value
=
data
.
max
())
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment