Skip to content
Snippets Groups Projects
Commit 5002a7d7 authored by pinyili2's avatar pinyili2
Browse files

add libs

parent 52d5045f
No related branches found
No related tags found
1 merge request!1Pinyili2
/home/pinyili2/server5/tacoxDNA/src/libs
\ No newline at end of file
"""
Utility functions.
base.py includes the classes: System, Strand, Nucleotide
- Make initial configurations (generate.py)
- Get detailed energy information (process_data/)
- If you want to use it with oxRNA, you have to set environment variable OXRNA to 1 (export OXRNA=1)
"""
import sys
import numpy as np
import os
def partition(s, d):
if d in s:
sp = s.split(d, 1)
return sp[0], d, sp[1]
else:
return s, "", ""
number_to_base = {0: 'A', 1: 'G', 2: 'C', 3: 'T'}
base_to_number = {'A': 0, 'a': 0, 'G': 1, 'g': 1,
'C': 2, 'c': 2, 'T': 3, 't': 3,
'U': 3, 'u': 3, 'D': 4}
try:
FLT_EPSILON = np.finfo(np.float).eps
except:
FLT_EPSILON = 2.2204460492503131e-16
# oxDNA constants
POS_BACK = -0.4
POS_STACK = 0.34
POS_BASE = 0.4
CM_CENTER_DS = POS_BASE + 0.2
FENE_R0_OXDNA = 0.7525
FENE_EPS = 2.0
POS_MM_BACK1 = -0.3400
POS_MM_BACK2 = 0.3408
# may come in handy later
RNA = False
RNA_POS_BACK_a1 = -0.4
RNA_POS_BACK_a3 = 0.2
RNA_POS_BACK_a2 = 0.0
LENGTH_FACT = 8.518
BASE_BASE = 0.3897628551303122
LENGTH_FACT = 8.518
BASE_BASE = 0.3897628551303122
CREPY_COLOR_TABLE = ['red', 'blue', '0,0.502,0', '1,0.8,0', '0.2,0.8,1']
# INT_POT_TOTAL = 0
INT_HYDR = 4
INT_STACK = 2
INT_CROSS_STACK = 5
INT_COAX_STACK = 6
INT_FENE = 0
INT_EXC_BONDED = 1
INT_EXC_NONBONDED = 3
H_CUTOFF = -0.1
NOGROOVE_ENV_VAR = "OXDNA_NOGROOVE"
MM_GROOVING = os.environ.get(NOGROOVE_ENV_VAR) == '1'
# static class
class Logger(object):
DEBUG = 0
INFO = 1
WARNING = 2
CRITICAL = 3
debug_level = INFO
messages = ("DEBUG", "INFO", "WARNING", "CRITICAL")
@staticmethod
def log(msg, level=None, additional=None):
if level == None:
level = Logger.INFO
if level < Logger.debug_level:
return
if additional != None and Logger.debug_level == Logger.DEBUG:
print("%s: %s (additional info: '%s')" % (Logger.messages[level], msg, additional), file=sys.stderr)
else:
print("%s: %s" % (Logger.messages[level], msg), file=sys.stderr)
@staticmethod
def die(msg):
Logger.log(msg, Logger.CRITICAL)
sys.exit()
class Nucleotide():
"""
Nucleotides compose Strands
cm_pos --- Center of mass position
Ex: [0, 0, 0]
a1 --- Unit vector indicating orientation of backbone with respect to base
Ex: [1, 0, 0]
a3 --- Unit vector indicating orientation (tilting )of base with respect to backbone
Ex: [0, 0, 1]
base --- Identity of base, which must be designated with either numbers or
letters (this is called type in the c++ code). Confusingly enough, this
is similar to Particle.btype in oxDNA.
Number: {0,1,2,3} or any number in between (-inf,-7) and (10, inf)
To use specific sequences (or an alphabet large than four) one should
start from the complementary pair 10 and -7. Complementary pairs are
such that base_1 + base_2 = 3;
Letter: {A,G,T,C} (these will be translated to {0, 1, 3, 2}).
These are set in the dictionaries: number_to_base, base_to_number
btype--- Identity of base. Unused at the moment.
pair --- Base-paired Nucleotide, used in oxView output
cluster --- Cluster ID, Number, used in oxView output
color --- Custom color, Number representing hex value, used in oxView output
"""
index = 0
def __init__(self, cm_pos, a1, a3, base, btype=None, v=np.array([0., 0., 0.]), L=np.array([0., 0., 0.]), n3=-1, pair=None, cluster=None, color=None):
self.index = Nucleotide.index
Nucleotide.index += 1
self.cm_pos = np.array(cm_pos)
self._a1 = np.array(a1)
self._a3 = np.array(a3)
self._original_base = base
# base should be an integer
if isinstance(base, int) or isinstance(base, np.int_):
pass
else:
try:
base = base_to_number[base]
except KeyError:
Logger.log("Invalid base (%s)" % base, level=Logger.WARNING)
self._base = base
if btype is None:
self._btype = base
else:
self._btype = btype
self._L = L
self._v = v
self.n3 = n3
self.next = -1
self.pair = pair
self.cluster = cluster
self.color = color
def get_pos_base (self):
"""
Returns the position of the base centroid
Note that cm_pos is the centrod of the backbone and base.
"""
return self.cm_pos + self._a1 * POS_BASE
pos_base = property(get_pos_base)
def get_pos_stack (self):
return self.cm_pos + self._a1 * POS_STACK
pos_stack = property (get_pos_stack)
def get_pos_back (self):
"""
Returns the position of the backbone centroid
Note that cm_pos is the centrod of the backbone and base.
"""
if MM_GROOVING:
return self.cm_pos + self._a1 * POS_MM_BACK1 + self._a2 * POS_MM_BACK2
elif RNA:
return self.cm_pos + self._a1 * RNA_POS_BACK_a1 + self._a2 * RNA_POS_BACK_a2 + self._a3 * RNA_POS_BACK_a3
else:
return self.cm_pos + self._a1 * POS_BACK
pos_back = property(get_pos_back)
def get_pos_back_rel(self):
"""
Returns the position of the backbone centroid relative to the centre of mass
i.e. it will be a vector pointing from the c.o.m. to the backbone
"""
return self.get_pos_back() - self.cm_pos
def get_a2(self):
return np.cross (self._a3, self._a1)
_a2 = property (get_a2)
def copy(self, disp=None, rot=None):
copy = Nucleotide(self.cm_pos, self._a1, self._a3, self._base, self._btype, self._L, self._v, self.n3, self.pair, self.cluster, self.color)
if disp is not None:
copy.translate(disp)
if rot is not None:
copy.rotate(rot)
return copy
def translate(self, disp):
self.cm_pos += disp
self.cm_pos_box += disp
def rotate(self, R, origin=None):
if origin == None: origin = self.cm_pos
self.cm_pos = np.dot(R, self.cm_pos - origin) + origin
self._a1 = np.dot(R, self._a1)
self._a3 = np.dot(R, self._a3)
def distance(self, other, PBC=True, box=None):
if PBC and box is None:
if not (isinstance (box, np.ndarray) and len(box) == 3):
Logger.die ("distance between nucleotides: if PBC is True, box must be a numpy array of length 3");
dr = other.pos_back - self.pos_back
if PBC:
dr -= box * np.rint (dr / box)
return dr
def is_uracil(self):
return isinstance(self._original_base, str) and self._original_base.lower() == "u"
def get_base(self):
"""
Returns a number containing base id
>>> v1 = np.array([0.,0.,0.])
>>> v2 = np.array([1.,0.,0.])
>>> v3 = np.array([0.,0.,1.])
>>> Nucleotide(v1, v2, v3, 'A').get_base()
'A'
>>> Nucleotide(v1, v2, v3, "C").get_base()
'C'
>>> Nucleotide(v1, v2, v3, "G").get_base()
'G'
>>> Nucleotide(v1, v2, v3, "T").get_base()
'T'
>>> Nucleotide(v1, v2, v3, 1).get_base()
'G'
>>> Nucleotide(v1, v2, v3, 103).get_base()
'103'
>>> Nucleotide(v1, v2, v3, -97).get_base()
'-97'
"""
if self.is_uracil():
return "U"
if type(self._base) is not int:
try:
number_to_base[self._base]
except KeyError:
Logger.log("Nucleotide.get_base(): nucleotide %d: unknown base type '%d', defaulting to 12 (A)" % (self.index, self._base), Logger.WARNING)
if self._base in [0, 1, 2, 3]:
return number_to_base[self._base]
else:
return str(self._base)
def _get_lorenzo_output(self):
a = np.concatenate((self.cm_pos, self._a1, self._a3, self._v, self._L))
return " ".join(str(x) for x in a)
def _get_ribbon_output(self):
s1 = self.cm_pos_box + self.get_pos_back_rel()
return "%lf %lf %lf %lf %lf %lf %lf %lf %lf" % (tuple(s1) + tuple (self._a1) + tuple (self._a2))
class Strand():
"""
Strand composed of Nucleotides
Strands can be contained in System
"""
index = 0
def __init__(self):
self.index = Strand.index
Strand.index += 1
self._first = -1
self._last = -1
self._nucleotides = []
self._sequence = []
self.visible = True
self._circular = False # bool on circular DNA
def get_length(self):
return len(self._nucleotides)
def get_sequence(self):
return self._sequence
def _prepare(self, si, ni):
self.index = si
self._first = ni
for n in range(self.N):
self._nucleotides[n].index = ni + n
self._last = ni + n
return ni + n + 1
def copy(self):
copy = Strand()
for n in self._nucleotides:
copy.add_nucleotide(n.copy())
return copy
def get_cm_pos(self):
return sum([x.cm_pos for x in self._nucleotides]) / self.N
def set_cm_pos(self, new_pos):
diff = new_pos - self.cm_pos
for n in self._nucleotides: n.translate(diff)
def translate(self, amount):
new_pos = self.cm_pos + amount
self.set_cm_pos(new_pos)
def rotate(self, R, origin=None):
if origin == None:
origin = self.cm_pos
for n in self._nucleotides:
n.rotate(R, origin)
def append(self, other):
if not isinstance (other, Strand):
raise ValueError
dr = self._nucleotides[-1].distance (other._nucleotides[0], PBC=False)
if np.sqrt(np.dot (dr, dr)) > (0.7525 + 0.25):
print("WARNING: Strand.append(): strands seem too far apart. Assuming you know what you are doing.", file=sys.stderr)
ret = Strand()
for n in self._nucleotides:
ret.add_nucleotide(n)
for n in other._nucleotides:
ret.add_nucleotide(n)
return ret
def get_slice(self, start=0, end=None):
if end is None:
end = self.get_length()
if end > self.get_length():
print("The given end parameter is larger than the number of nucleotides of the strand (%d > %d)" % (end, self.get_length()), file=sys.stderr)
raise ValueError
ret = Strand()
for i in range(start, end):
ret.add_nucleotide(self._nucleotides[i].copy())
return ret
def set_sequence(self, seq):
if isinstance(seq, str):
seq = [base_to_number[x] for x in seq]
if len(seq) != len(self._nucleotides):
Logger.log ("Cannot change sequence: lengths don't match", Logger.WARNING)
return
i = 0
for n in self._nucleotides:
n._base = seq[i]
i += 1
self._sequence = seq
def bring_in_box_nucleotides(self, box):
diff = np.rint(self.cm_pos / box) * box
for n in self._nucleotides:
n.cm_pos_box = n.cm_pos - diff
def add_nucleotide(self, n):
if len(self._nucleotides) == 0:
self._first = n.index
n.strand = self.index
self._nucleotides.append(n)
self._last = n.index
self.sequence.append(n._base)
def _get_lorenzo_output(self):
if not self.visible:
return ""
conf = "\n".join(n._get_lorenzo_output() for n in self._nucleotides) + "\n"
top = ""
for n in self._nucleotides:
if self._circular:
if n.index == self._first:
n3 = self._last
else:
n3 = n.index - 1
if n.index == self._last:
n5 = self._first
else:
n5 = n.index + 1
else:
if n.index == self._first:
n3 = -1
else:
n3 = n.index - 1
if n.index == self._last:
n5 = -1
else:
n5 = n.index + 1
top += "%d %s %d %d\n" % (self.index + 1, n.get_base(), n3, n5)
return conf, top
def get_lammps_N_of_bonds_strand(self):
N_bonds = 0
for n in self._nucleotides:
if n.index != self._last:
N_bonds += 1
elif self._circular:
N_bonds += 1
return N_bonds
def get_lammps_bonds(self):
top = []
for n in self._nucleotides:
if n.index != self._last:
top.append("%d %d" % (n.index + 1, n.index + 2))
elif self._circular:
top.append("%d %d" % (n.index + 1, self._first + 1))
return top
def _get_ribbon_output(self):
if not self.visible:
return ""
v = [n._get_ribbon_output() for n in self._nucleotides]
v.insert(0, "0. 0. 0. @ 0.3 C[red] RIB")
return " ".join(v)
cm_pos = property(get_cm_pos, set_cm_pos)
N = property(get_length)
sequence = property(get_sequence)
def make_circular(self, check_join_len=False):
if check_join_len:
dr = self._nucleotides[-1].distance (self._nucleotides[0], PBC=False)
if np.sqrt(np.dot (dr, dr)) > (0.7525 + 0.25):
Logger.log("Strand.make_circular(): ends of the strand seem too far apart. \
Assuming you know what you are doing.", level=Logger.WARNING)
self._circular = True
def make_noncircular(self):
self._circular = False
def is_circular(self):
return self._circular
def cut_in_two(self, copy=True): # cuts a strand into two strands in the middle
fragment_one = Strand()
fragment_two = Strand()
counter = 0
for n in self._nucleotides:
if counter < (len(self._nucleotides) / 2):
fragment_one.add_nucleotide(n.copy() if copy else n)
else:
fragment_two.add_nucleotide(n.copy() if copy else n)
counter += 1
return fragment_one , fragment_two
def parse_visibility(path):
try:
inp = open (path, 'r')
except:
Logger.log ("Visibility file `" + path + "' not found. Assuming default visibility", Logger.WARNING)
return []
output = []
for linea in inp.readlines():
linea = linea.strip().lower()
# remove everything that comes after '#'
linea = linea.split('#')[0]
if len(linea) > 0: output.append(linea)
return output
class System(object):
"""
Object representing an oxDNA system
Contains strands
Arguments:
box -- the box size of the system
Ex: box = [50, 50, 50]
time --- Time of the system
E_pot --- Potential energy
E_kin --- Kinetic energy
"""
def __init__(self, box, time=0, E_pot=0, E_kin=0):
self._time = time
self._ready = False
self._box = np.array(box, np.float64)
self._N = 0
self._N_strands = 0
self._strands = []
self._nucleotide_to_strand = []
self._N_cells = np.array(np.floor (self._box / 3.), np.int_)
for kk in [0, 1, 2]:
if self._N_cells[kk] > 100:
self._N_cells[kk] = 100
self._cellsides = box / self._N_cells
self._head = [False, ] * int(self._N_cells[0] * self._N_cells[1] * self._N_cells[2])
self.E_pot = E_pot
self.E_kin = E_kin
self.E_tot = E_pot + E_kin
self.cells_done = False
Nucleotide.index = 0
Strand.index = 0
def get_sequences (self):
return [x._sequence for x in self._strands]
_sequences = property (get_sequences)
def get_N_Nucleotides(self):
return self._N
def get_N_strands(self):
return self._N_strands
def _prepare(self, visibility):
sind = 0
nind = 0
for sind in range(self._N_strands):
nind = self._strands[sind]._prepare(sind, nind)
if visibility != None: self.set_visibility(visibility)
for s in self._strands:
s.bring_in_box_nucleotides(self._box)
def copy (self):
copy = System (self._box)
for s in self._strands:
copy.add_strand (s.copy (), check_overlap=False)
return copy
def get_reduced(self, according_to, bbox=None, check_overlap=False):
visibility_list = self.get_visibility(according_to)
if bbox == None or bbox == True:
bbox = self._box
elif isinstance(bbox, list) and not isinstance(bbox, np.array):
bbox = np.array(bbox)
else:
Logger.die("Cannot reduce system, bbox not correct")
copy = System(bbox)
for i in range(self._N_strands):
if visibility_list[i]:
copy.add_strand(self._strands[i].copy(), check_overlap)
return copy
def join(self, other, box=None):
if box is None:
box = np.array([0., 0., 0.])
for i in range(3):
if other._box[i] > self._box[i]:
box[i] = other._box[i]
else:
box[i] = self._box[i]
ret = System(np.array(box, np.float64))
for s in self._strands:
if s.visible:
ret.add_strand(s.copy(), check_overlap=False)
for s in other._strands:
if s.visible:
ret.add_strand(s.copy(), check_overlap=False)
return ret
def get_visibility(self, arg=None):
actions = {'vis': True, 'inv': False}
visibility_list = [True, ] * self._N_strands
if isinstance (arg, str):
Logger.log ("Setting visibility with method 'file'", Logger.INFO)
lines = parse_visibility(arg)
for line in lines:
# [uno, due, tre] = [p.strip() for p in line.partition("=")]
[uno, due, tre] = [p.strip() for p in partition (line, "=")]
if due != "=" or uno not in ["inv", "vis", "default"]:
Logger.log ("Lines in visibility must begin with one of inv=, vis= and default=. Skipping this line: --" + line + "--", Logger.WARNING)
continue
if uno == 'default':
if tre not in ['inv', 'vis']:
Logger.log ("Wrong default in visibility file. Assuming visible as default", Logger.WARNING)
tre = 'vis'
if tre == 'inv':
visibility_list = [False, ] * self._N_strands
else:
# filter removes all the empty strings
arr = [a.strip() for a in [_f for _f in tre.split(',') if _f]]
for a in arr:
try:
ind = int(a)
except:
Logger.log ("Could not cast '%s' to int. Assuming 0" % a, Logger.WARNING)
ind = 0
try:
visibility_list[ind] = actions[uno]
except:
Logger.log ("Strand %i does not exist in system, cannot assign visibility. Ignoring" % ind, Logger.WARNING)
elif isinstance (arg, list):
Logger.log("Setting visibility with method 'list'", Logger.INFO)
# first len(arg) elements will be overwritten
visibility_list[0:len(arg)] = arg
else:
if arg is not None:
Logger.log("Argument of System.set_visibility can be a string or a list. Skipping visibility settings, assuming all strands are visible", Logger.WARNING)
return visibility_list
return visibility_list
def set_visibility(self, arg=None):
visibility_list = self.get_visibility(arg)
for i in range(self._N_strands):
self._strands[i].visible = visibility_list[i]
return
def do_cells (self):
self._N_cells = np.array(np.floor (self._box / 3.), np.int_)
for kk in [0, 1, 2]:
if self._N_cells[kk] > 100:
self._N_cells[kk] = 100
self._cellsides = self._box / self._N_cells
for n in self._nucleotides:
n.next = -1
self._head = [False, ] * int(self._N_cells[0] * self._N_cells[1] * self._N_cells[2])
for n in self._nucleotides:
cs = np.array((np.floor((n.cm_pos / self._box - np.rint(n.cm_pos / self._box) + 0.5) * (1. - FLT_EPSILON) * self._box / self._cellsides)), np.int_)
cella = cs[0] + self._N_cells[0] * cs[1] + self._N_cells[0] * self._N_cells[1] * cs[2]
n.next = self._head[cella]
self._head[cella] = n
self.cells_done = True
return
def add_strand(self, s, check_overlap=True):
"""
Add a Strand to the System
"""
'''
# we now make cells off-line to save time when loading
# configurations; interactions are computed with h_bonds.py
# most of the time anyways
for n in s._nucleotides:
cs = np.array((np.floor((n.cm_pos/self._box - np.rint(n.cm_pos / self._box ) + 0.5) * (1. - FLT_EPSILON) * self._box / self._cellsides)), np.int_)
cella = cs[0] + self._N_cells[0] * cs[1] + self._N_cells[0] * self._N_cells[1] * cs[2]
n.next = self._head[cella]
self._head[cella] = n
'''
self._strands.append(s)
self._N += s.N
self._N_strands += 1
self.cells_done = False
return True
def add_strands(self, ss, check_overlap=True):
if isinstance(ss, tuple) or isinstance(ss, list):
added = []
for s in ss:
if self.add_strand(s, check_overlap):
added.append(s)
if len(added) == len(ss):
return True
else:
for s in added:
Nucleotide.index -= s.N
Strand.index -= 1
self._strands.pop()
self._N -= s.N
self._N_strands -= 1
self._sequences.pop()
return False
elif not self.add_strand(ss, check_overlap):
return False
return True
def get_unique_seq(self):
# we need only the unique sequences of the system
# see http://stackoverflow.com/questions/1143379/removing-duplicates-from-list-of-lists-in-python
unique_seq = list(dict((str(x), x) for x in self._sequences).values())
return unique_seq
def rotate (self, amount, origin=None):
for s in self._strands:
s.rotate (amount, origin)
def translate (self, amount):
for s in self._strands:
s.translate (amount)
def print_ribbon_output(self, name, same_colors=False, visibility=None, constr_size=None):
self._prepare(visibility)
if constr_size != None:
for i in range(self.N_strands / constr_size):
cind = constr_size * i
s1 = self._strands[cind]
s2 = self._strands[cind + 1]
s3 = self._strands[cind + 2]
s4 = self._strands[cind + 3]
diff1 = np.rint(s1.cm_pos / self._box) * self._box
diff2 = np.rint(s2.cm_pos / self._box) * self._box
diff3 = np.rint(s3.cm_pos / self._box) * self._box
diff4 = np.rint(s4.cm_pos / self._box) * self._box
s2.translate(np.rint((s1.cm_pos - s2.cm_pos - diff1 + diff2) / self._box) * self._box)
s3.translate(np.rint((s1.cm_pos - s3.cm_pos - diff1 + diff3) / self._box) * self._box)
s4.translate(np.rint((s1.cm_pos - s4.cm_pos - diff1 + diff4) / self._box) * self._box)
unique_seq = list(self.get_unique_seq())
if same_colors:
n = len(unique_seq)
colors = CREPY_COLOR_TABLE
while len(colors) < n: colors *= 2
f = open(name, "w")
f.write(".Box:%lf,%lf,%lf\n" % tuple(self._box))
for s in self._strands:
out = s._get_ribbon_output() + "\n"
if same_colors:
color = colors[unique_seq.index(s.sequence)]
out = out.replace("C[red]", "C[%s]" % color)
f.write(out)
f.close()
def print_lorenzo_output(self, conf_name, top_name, visibility=None):
self._prepare(visibility)
conf = "t = %lu\nb = %f %f %f\nE = %lf %lf %lf\n" % (int(self._time), self._box[0], self._box[1], self._box[2], self.E_tot, self.E_pot, self.E_kin)
visible_strands = 0
visible_nucleotides = 0
for s in self._strands:
if s.visible:
visible_strands += 1
visible_nucleotides += s.N
topology = "%d %d\n" % (visible_nucleotides, visible_strands)
for s in self._strands:
sc, st = s._get_lorenzo_output()
topology += st
conf += sc
with open(conf_name, "w") as f:
f.write(conf)
f.close()
with open(top_name, "w") as f:
f.write(topology)
f.close()
def print_oxview_output(self, name):
import json
out = {
'box': self._box.tolist(),
'systems': [{'id':0, 'strands': []}]
}
for s in self._strands:
strand = {
'id': s.index, 'end3': s._nucleotides[-1].index, 'end5': s._nucleotides[0].index,
'class': 'NucleicAcidStrand', 'monomers': []
}
for i, n in enumerate(s._nucleotides):
if s._circular:
if i == 0:
n5 = s._nucleotides[-1].index
else:
n5 = s._nucleotides[i - 1].index
if i == len(s._nucleotides) - 1:
n3 = s._nucleotides[0].index
else:
n3 = s._nucleotides[i + 1].index
else:
if i == 0:
n5 = -1
else:
n5 = s._nucleotides[i - 1].index
if i == len(s._nucleotides) - 1:
n3 = -1
else:
n3 = s._nucleotides[i + 1].index
nucleotide = {
'id': n.index,
'type': n.get_base(),
'class': 'DNA',
'p': n.cm_pos.tolist(),
'a1': n._a1.tolist(),
'a3': n._a3.tolist()
}
if n3 >= 0:
nucleotide['n3'] = n3
if n5 >= 0:
nucleotide['n5'] = n5
if n.pair is not None:
nucleotide['bp'] = n.pair.index
if n.cluster is not None:
nucleotide['cluster'] = n.cluster
if n.color is not None:
nucleotide['color'] = n.color
strand['monomers'].append(nucleotide)
out['systems'][0]['strands'].append(strand)
with open(name, "w") as f:
f.write(json.dumps(out))
N = property(get_N_Nucleotides)
N_strands = property (get_N_strands)
def get_nucleotide_list (self):
ret = []
for s in self._strands:
ret += s._nucleotides
return ret
_nucleotides = property (get_nucleotide_list)
def map_nucleotides_to_strands(self):
# this function creates nucl_id -> strand_id array
for i in range(len(self._strands)):
for _ in range(self._strands[i].get_length()):
self._nucleotide_to_strand.append(i)
def print_dot_bracket_output(self, filename):
# assumes each nucleotide has at most 1 hydrogen bond, requires interactions already to be filled for nucleotide objects
nupack_string = ""
for n1 in range(self.get_N_Nucleotides()):
interactions = self._nucleotides[n1].interactions
if len(interactions) > 1:
Logger.log ("more than 1 HB for a nucleotide", Logger.WARNING)
if len(interactions) == 0:
nupack_string += "."
elif interactions[0] > n1:
nupack_string += "("
elif interactions[0] < n1:
nupack_string += ")"
else:
Logger.log("unexpected interaction detected while building nupack string", Logger.CRITICAL)
f = open(filename, "w")
f.write(nupack_string)
f.close()
'''
Created on Nov 11, 2018
@author: lorenzo
'''
import numpy as np
from . import base
from . import utils
import math
BP = "bp"
DEGREES = "degrees"
class StrandGenerator (object):
def generate(self, bp, sequence=None, start_pos=np.array([0, 0, 0]), direction=np.array([0, 0, 1]), perp=None, rot=0., double=True, circular=False, DELTA_LK=0, BP_PER_TURN=10.34, ds_start=None, ds_end=None, force_helicity=False):
"""
Generate a strand of DNA.
- linear, circular (circular)
- ssDNA, dsDNA (double)
- Combination of ss/dsDNA (ds_start, ds_end)
Note: Relevent argument(s) in parentheses.
Arguments:
bp --- Integer number of bp/nt (required)
sequence --- Array of integers or string. Should be same length as bp (default None)
Default (None) generates a random sequence.
Ex: [0,1,2,3,0]
Ex: "AGCTA"
See dictionary base.base_to_number for int/char conversion {0:'A'}
start_pos --- Location to begin building the strand (default np.array([0, 0, 0]))
direction --- a3 vector, orientation of the base (default np.array([0, 0, 1]))
perp --- Sets a1 vector, the orientation of the backbone. (default False)
Must be perpendicular to direction (as a1 must be perpendicular to a3)
If perp is None or False, perp is set to a random orthogonal angle
rot --- Rotation of first bp (default 0.)
double --- Generate dsDNA (default True)
circular --- Generate closed circular DNA (defalt False)
Limitations...
For ssDNA (double=False): bp >= 4
For dsDNA (double=True) : bp >= 30
Will throw warnings. Allowed, but use at your own risk.
DELTA_LK --- Integer change in linking number from Lk0 (default 0)
Only valid if circular==True
BP_PER_TURN --- Base pairs per complete 2*pi helix turn. (default 10.34)
Only valid if circular==True
ds_start --- Index (from 0) to begin double stranded region (default None)
ds_end --- Index (from 0) to end double stranded region (default None)
Default is None, which is entirely dsDNA; sets ds_start = 0, ds_end=bp
Ex: ds_start=0, ds_end=10 will create a double stranded region on bases
range(0,10): [0,1,2,3,4,5,6,7,8,9]
Note: To generate a nicked circular dsDNA, manually change state with
{Strand}.make_noncircular()
force_helicity --- Force generation of helical strands. Use helicity by default
for bp > 30. Warns from 18 to 29. Will crash oxDNA below 18. (default False)
Note: Minimuim circular duplex is 18. Shorter circular strands disobey FENE.
For shorter strands, circular ssDNA is generated in a circle instead of having
imposed helicity.
Examples:
Generate ssDNA:
generate(bp=4,sequence=[0,1,2,3],double=False,circular=False)
Generate circular dsDNA with +2 Linking number:
generate(bp=45,double=True,circular=True,DELTA_LK=2)
Generate a circular ssDNA (45nt) with ssDNA (25nt) annealed to indices 0 to 24:
generate(bp=45,double=True,circular=True,ds_start=0,ds_end=25)
"""
# we need numpy array for these
start_pos = np.array(start_pos, dtype=float)
direction = np.array(direction, dtype=float)
if isinstance(sequence, list):
sequence = np.array(sequence)
# Loads of input checking...
if isinstance(sequence, str):
try:
sequence = [base.base_to_number[x] for x in sequence]
except KeyError:
base.Logger.die("Key Error: sequence is invalid")
if sequence == None:
sequence = np.random.randint(0, 4, bp)
elif len(sequence) != bp:
n = bp - len(sequence)
sequence = np.append(sequence, np.random.randint(0, 4, n))
base.Logger.log("sequence is too short, adding %d random bases" % n, base.Logger.WARNING)
if circular == True and bp < 30:
# 30 is about the cut off for circular dsDNA. Anything shorter will probably clash.
# oxDNA can relax down to 18.
# 4 is about the cut off for circular ssDNA. Use dsDNA cutoff for saftey.
base.Logger.log("sequence is too short! Proceed at your own risk", base.Logger.WARNING)
option_use_helicity = True
if circular == True and bp < 30 and double == False:
base.Logger.log("sequence is too short! Generating ssDNA without imposed helicity", base.Logger.WARNING)
# Do not impose helcity to generate shorter circular ssDNA
if not force_helicity:
option_use_helicity = False
if ds_start == None:
ds_start = 0
if ds_end == None:
ds_end = bp
if ds_start > ds_end:
base.Logger.die("ds_end > ds_start")
if ds_end > bp:
base.Logger.die("ds_end > bp")
# we need to find a vector orthogonal to direction
dir_norm = np.sqrt(np.dot(direction, direction))
if dir_norm < 1e-10:
base.Logger.log("direction must be a valid vector, defaulting to (0, 0, 1)", base.Logger.WARNING)
direction = np.array([0, 0, 1])
else:
direction /= dir_norm
if perp is None or perp is False:
v1 = np.random.random_sample(3)
v1 -= direction * (np.dot(direction, v1))
v1 /= np.sqrt(sum(v1 * v1))
else:
v1 = perp;
# Setup initial parameters
ns1 = base.Strand()
# and we need to generate a rotational matrix
R0 = utils.get_rotation_matrix(direction, rot)
# R = get_rotation_matrix(direction, np.deg2rad(35.9))
R = utils.get_rotation_matrix(direction, [1, BP])
a1 = v1
a1 = np.dot (R0, a1)
rb = np.array(start_pos)
a3 = direction
# Circular strands require a continuious deformation of the ideal helical pitch
if circular == True:
# Unit vector orthogonal to plane of torus
# Note: Plane of torus defined by v1,direction
torus_perp = np.cross(v1, direction)
# Angle between base pairs along torus
angle = 2. * np.pi / float(bp)
# Radius of torus
radius = base.FENE_R0_OXDNA / math.sqrt(2. * (1. - math.cos(angle)));
if circular == True and option_use_helicity:
# Draw backbone in a helical spiral around a torus
# Draw bases pointing to center of torus
for i in range(bp):
# Torus plane defined by direction and v1
v_torus = v1 * base.BASE_BASE * math.cos(i * angle) + \
direction * base.BASE_BASE * math.sin(i * angle)
rb += v_torus
# a3 is tangent to the torus
a3 = v_torus / np.linalg.norm(v_torus)
R = utils.get_rotation_matrix(a3, [i * (round(bp // BP_PER_TURN) + DELTA_LK) / float(bp) * 360, DEGREES])
# a1 is orthogonal to a3 and the torus normal
a1 = np.cross (a3, torus_perp)
# Apply the rotation matrix
a1 = np.dot(R, a1)
ns1.add_nucleotide(base.Nucleotide(rb - base.CM_CENTER_DS * a1, a1, a3, sequence[i]))
ns1.make_circular(check_join_len=True)
elif circular == True and not option_use_helicity:
for i in range(bp):
rbx = math.cos (i * angle) * radius + 0.34 * math.cos(i * angle)
rby = math.sin (i * angle) * radius + 0.34 * math.sin(i * angle)
rbz = 0.
rb = np.array([rbx, rby, rbz])
a1x = math.cos (i * angle)
a1y = math.sin (i * angle)
a1z = 0.
a1 = np.array([a1x, a1y, a1z])
ns1.add_nucleotide(base.Nucleotide(rb, a1, np.array([0, 0, 1]), sequence[i]))
ns1.make_circular(check_join_len=True)
else:
# Add nt in canonical double helix
for i in range(bp):
ns1.add_nucleotide(base.Nucleotide(rb - base.CM_CENTER_DS * a1, a1, a3, sequence[i]))
if i != bp - 1:
a1 = np.dot(R, a1)
rb += a3 * base.BASE_BASE
# Fill in complement strand
if double == True:
ns2 = base.Strand()
for i in reversed(list(range(ds_start, ds_end))):
# Note that the complement strand is built in reverse order
nt = ns1._nucleotides[i]
a1 = -nt._a1
a3 = -nt._a3
nt2_cm_pos = -(base.FENE_EPS + 2 * base.POS_BACK) * a1 + nt.cm_pos
ns2.add_nucleotide(base.Nucleotide(nt2_cm_pos, a1, a3, 3 - sequence[i]))
if ds_start == 0 and ds_end == bp and circular == True:
ns2.make_circular(check_join_len=True)
return ns1, ns2
else:
return ns1
def generate_or_sq(self, bp, sequence=None, start_pos=np.array([0., 0., 0.]), direction=np.array([0., 0., 1.]), perp=None, double=True, rot=0., angle=np.pi / 180 * 33.75, length_change=0, region_begin=0, region_end=0):
if length_change and len(region_begin) != len(region_end):
if (len(region_end) + 1) == len(region_begin):
base.Logger.log("the lengths of begin (%d) and end (%d) arrays are mismatched; I will try to proceed by using the number of basepairs as the last element of the end array" % (len(region_begin), len(region_end)), base.Logger.WARNING)
region_end.append(bp + 1)
else:
base.Logger.die("the lengths of begin (%d) and end (%d) arrays are unrecoverably mismatched" % (len(region_begin), len(region_end)))
# we need numpy array for these
start_pos = np.array(start_pos, dtype=float)
direction = np.array(direction, dtype=float)
if sequence == None:
sequence = np.random.randint(0, 4, bp)
elif len(sequence) != bp:
n = bp - len(sequence)
sequence += np.random.randint(0, 4, n)
base.Logger.log("sequence is too short, adding %d random bases" % n, base.Logger.WARNING)
# angle should be an array, with a length 1 less than the # of base pairs
if not isinstance(angle, np.ndarray):
angle = np.ones(bp) * angle
elif len(angle) != bp - 1:
base.Logger.log("generate_or_sq: incorrect angle array length, should be 1 less than number of base pairs", base.Logger.CRITICAL)
# create the sequence of the second strand as made of complementary bases
sequence2 = [3 - s for s in sequence]
sequence2.reverse()
# we need to find a vector orthogonal to direction
dir_norm = np.sqrt(np.dot(direction, direction))
if dir_norm < 1e-10:
base.Logger.log("direction must be a valid vector, defaulting to (0, 0, 1)", base.Logger.WARNING)
direction = np.array([0, 0, 1])
else:
direction /= dir_norm
if perp is None:
v1 = np.random.random_sample(3)
v1 -= direction * (np.dot(direction, v1))
v1 /= np.sqrt(sum(v1 * v1))
else:
v1 = perp;
# and we need to generate a rotational matrix
R0 = utils.get_rotation_matrix(direction, rot)
ns1 = base.Strand()
a1 = v1
a1 = np.dot (R0, a1)
rb = np.array(start_pos)
a3 = direction
Rs = []
for i in range(bp):
ns1.add_nucleotide(base.Nucleotide(rb - base.CM_CENTER_DS * a1, a1, a3, sequence[i]))
if i != bp - 1:
R = utils.get_rotation_matrix(direction, angle[i])
Rs.append(R)
a1 = np.dot(R, a1)
rb += a3 * base.BASE_BASE
if length_change:
for j in range(len(length_change)):
if i >= region_begin[j] and i < region_end[j]:
if length_change[j]:
rb += a3 * base.BASE_BASE * (-(float(length_change[j]) / (region_end[j] - region_begin[j])))
if double == True:
a1 = -a1
a3 = -direction
ns2 = base.Strand()
for i in range(bp):
# create new nucleotide and save basepair info on both sides
paired_nuc = ns1._nucleotides[bp-i-1]
new_nuc = base.Nucleotide(rb - base.CM_CENTER_DS * a1, a1, a3, sequence2[i], pair=paired_nuc)
paired_nuc.pair = new_nuc
ns2.add_nucleotide(new_nuc)
if i != bp - 1:
# we loop over the rotation matrices in the reverse order, and use the transpose of each matrix
a1 = np.dot(Rs.pop().transpose(), a1)
rb += a3 * base.BASE_BASE
if length_change:
for j in range(len(length_change)):
if bp - 2 - i >= region_begin[j] and bp - 2 - i < region_end[j]:
if length_change[j]:
rb += a3 * base.BASE_BASE * (-(float(length_change[j]) / (region_end[j] - region_begin[j])))
return ns1, ns2
else: return ns1
def generate_double_offset(self, seqA, seqB, offset, start_pos=np.array([0, 0, 0]), direction=np.array([0, 0, 1]), perp=None, rot=0):
if isinstance (seqA, str):
seqa = [base.base_to_number[x] for x in seqA]
else:
seqa = seqA
if isinstance (seqB, str):
seqb = [base.base_to_number[x] for x in seqB]
else:
seqb = seqB
bp = max (len(seqa), len(seqb) + offset)
s1, s2 = self.generate(bp, None, start_pos, direction, False, True, 0.)
s1 = s1.get_slice (0, len(seqa))
if len(seqb) + offset > len(seqa):
s2 = s2.get_slice (0, len(seqb)) # starts from opposite end
else:
s2 = s2.get_slice (bp - offset - len(seqb), len(seqb))
s1.set_sequence (seqa)
s2.set_sequence (seqb)
return s1, s2
def generate_rw (self, sequence, start_pos=np.array([0., 0., 0.])):
"""
Generate ssDNA as a random walk (high-energy configurations are possible):
generate(bp=45,double=False,circular=False,random_walk=True)
"""
# random walk generator
base.Logger.log("Generating strand as a random walk. Remember to equilibrate the configuration with MC", base.Logger.WARNING)
d = np.array ([0.7525, 0., 0.])
pos = start_pos
rw = []
rw.append(pos)
for i, _ in enumerate(sequence[1:]):
overlap = True
while overlap:
overlap = False
R = utils.get_random_rotation_matrix()
dd = np.dot (R, d)
trypos = pos + np.dot (R, d);
overlap = False
for r in rw:
dd = trypos - r
if np.dot (dd, dd) < 0.40 * 0.40:
overlap = True
pos = trypos
rw.append (pos)
# we get the a1 vectors in a smart way
a1s = []
d = rw[1] - rw[0]
a1s.append (d / np.sqrt (np.dot(d, d)))
for i in range (1, len(rw) - 1):
d = (rw[i + 1] + rw[i - 1]) * 0.5
d = rw[i] - d
a1s.append (d / np.sqrt(np.dot (d, d)))
d = rw[len(rw) - 1] - rw[len(rw) - 2]
a1s.append (d / np.sqrt (np.dot(d, d)))
s = base.Strand()
for i, r in enumerate(rw):
a1, _, a3 = utils.get_orthonormalized_base (a1s[i], utils.get_random_vector(), utils.get_random_vector())
# we use abs since POS_BACK is negative
cm = r + a1s[i] * abs(base.POS_BACK)
s.add_nucleotide (base.Nucleotide (cm, a1, a3, sequence[i]))
return s
class vhelix_vbase_to_nucleotide(object):
# at the moment squares with skips in have entries in the dicts but with the nucleotide list empty (rather than having no entry) - I'm not sure whether or not this is desirable. It's probably ok
def __init__(self):
self._scaf = {}
self._stap = {}
self.nuc_count = 0 # record the nucleotide count, updated only after a whole strand is added
self.strand_count = 0
def add_scaf(self, vh, vb, strand, nuc):
self._scaf[(vh, vb)] = (strand, nuc)
def add_stap(self, vh, vb, strand, nuc):
self._stap[(vh, vb)] = (strand, nuc)
# these methods use a reference vhvb2n object to make the final vhvb2n object
def add_scaf_strand(self, add_strand, reference, continue_join = False):
count = 0
size = len(self._scaf)
for (vh, vb), [strand_ind, nuc] in reference._scaf.items():
if strand_ind == add_strand:
self.add_scaf(vh, vb, self.strand_count, [x + self.nuc_count for x in nuc])
count += len(nuc)
self.nuc_count += count
if len(self._scaf) == size:
return 1
else:
if continue_join == False:
self.strand_count += 1
return 0
def add_stap_strand(self, add_strand, reference, continue_join = False):
count = 0
size = len(self._stap)
for (vh, vb), [strand_ind, nuc] in reference._stap.items():
if strand_ind == add_strand:
self.add_stap(vh, vb, self.strand_count, [x + self.nuc_count for x in nuc])
count += len(nuc)
self.nuc_count += count
if len(self._stap) == size:
return 1
else:
if continue_join == False:
self.strand_count += 1
return 0
def add_strand(self, add_strand, reference, continue_join = False):
if self.add_scaf_strand(add_strand, reference, continue_join) and self.add_stap_strand(add_strand, reference, continue_join):
return 1
else:
return 0
mass_in_lammps = 3.1575
inertia_in_lammps = 0.435179
number_oxdna_to_lammps = {0 : 0, 1 : 2, 2 : 1, 3 : 3}
import numpy as np
import itertools
from math import sqrt
import sys
import copy
BASE_SHIFT = 1.13
COM_SHIFT = 0.5
FROM_OXDNA_TO_ANGSTROM = 8.518
FROM_ANGSTROM_TO_OXDNA = 1. / FROM_OXDNA_TO_ANGSTROM
NAME_TO_BASE = {
"ADE" : "A",
"CYT" : "C",
"GUA" : "G",
"THY" : "T",
"URA" : "U",
}
BASES = ["A", "T", "G", "C", "U"]
class Nucleotide(object):
RNA_warning_printed = False
def __init__(self, name, idx):
object.__init__(self)
self.name = name.strip()
if self.name in list(NAME_TO_BASE.keys()):
self.base = NAME_TO_BASE[self.name]
elif self.name in BASES:
if self.name == "U" and not Nucleotide.RNA_warning_printed:
print("WARNING: unsupported uracil detected: use at your own risk", file=sys.stderr)
Nucleotide.RNA_warning_printed = True
self.base = self.name
else:
self.base = name[1:]
self.idx = idx
self.base_atoms = []
self.phosphate_atoms = []
self.sugar_atoms = []
self.named_atoms = {}
self.ring_names = ["C2", "C4", "C5", "C6", "N1", "N3"]
self.chain_id = None
def get_atoms(self):
return self.base_atoms + self.phosphate_atoms + self.sugar_atoms
def add_atom(self, a):
if 'P' in a.name or a.name == "HO5'":
self.phosphate_atoms.append(a)
elif "'" in a.name:
self.sugar_atoms.append(a)
else:
self.base_atoms.append(a)
self.named_atoms[a.name] = a
if self.chain_id == None:
self.chain_id = a.chain_id
def get_com(self, atoms=None):
if atoms == None:
atoms = self.atoms
com = np.array([0., 0., 0.])
for a in atoms:
com += a.pos
return com / len(atoms)
def compute_a3(self):
base_com = self.get_com(self.base_atoms)
# the O4' oxygen is always (at least for non pathological configurations, as far as I know) oriented 3' -> 5' with respect to the base's centre of mass
parallel_to = self.named_atoms["O4'"].pos - base_com
self.a3 = np.array([0., 0., 0.])
for perm in itertools.permutations(self.ring_names, 3):
p = self.named_atoms[perm[0]]
q = self.named_atoms[perm[1]]
r = self.named_atoms[perm[2]]
v1 = p.pos - q.pos
v2 = p.pos - r.pos
v1 /= sqrt(np.dot(v1, v1))
v2 /= sqrt(np.dot(v2, v2))
if abs(np.dot(v1, v2)) > 0.01 or 1:
a3 = np.cross(v1, v2)
a3 /= sqrt(np.dot(a3, a3))
if np.dot(a3, parallel_to) < 0.:
a3 = -a3
self.a3 += a3
self.a3 /= sqrt(np.dot(self.a3, self.a3))
def compute_a1(self):
if "C" in self.name or "T" in self.name or "U" in self.name:
pairs = [ ["N3", "C6"], ["C2", "N1"], ["C4", "C5"] ]
else:
pairs = [ ["N1", "C4"], ["C2", "N3"], ["C6", "C5"] ]
self.a1 = np.array([0., 0., 0.])
for pair in pairs:
p = self.named_atoms[pair[0]]
q = self.named_atoms[pair[1]]
diff = p.pos - q.pos
self.a1 += diff
self.a1 /= sqrt(np.dot(self.a1, self.a1))
def compute_as(self):
self.compute_a1()
self.compute_a3()
self.a2 = np.cross(self.a3, self.a1)
self.check = abs(np.dot(self.a1, self.a3))
def correct_for_large_boxes(self, box):
for atom in self.atoms:
atom.shift(-np.rint(atom.pos / box ) * box)
def to_pdb(self, chain_identifier, print_H, residue_serial, residue_suffix, residue_type, bfactor):
res = []
for a in self.atoms:
if not print_H and 'H' in a.name:
continue
if residue_type == "5":
if 'P' in a.name:
if a.name == 'P':
phosphorus = a
continue
elif a.name == "O5'":
O5prime = a
elif residue_type == "3":
if a.name == "O3'":
O3prime = a
res.append(a.to_pdb(chain_identifier, residue_serial, residue_suffix, bfactor))
# if the residue is a 3' or 5' end, it requires one more hydrogen linked to the O3' or O5', respectively
if residue_type == "5":
new_hydrogen = copy.deepcopy(phosphorus)
new_hydrogen.name = "HO5'"
# we put the new hydrogen at a distance 1 Angstrom from the O5' oxygen along the direction that, in a regular nucleotide, connects O5' and P
dist_P_O = phosphorus.pos - O5prime.pos
dist_P_O *= 1. / np.sqrt(np.dot(dist_P_O, dist_P_O))
new_hydrogen.pos = O5prime.pos + dist_P_O
res.append(new_hydrogen.to_pdb(chain_identifier, residue_serial, residue_suffix, bfactor))
elif residue_type == "3":
new_hydrogen = copy.deepcopy(O3prime)
new_hydrogen.name = "HO3'"
# we put the new hydrogen at a distance 1 Angstrom from the O3' oxygen along a direction which is a linear combination of the three
# orientations that approximately reproduce the crystallographic position
new_distance = 0.2 * self.a2 - 0.2 * self.a1 - self.a3
new_distance *= 1. / np.sqrt(np.dot(new_distance, new_distance))
new_hydrogen.pos = O3prime.pos + new_distance
res.append(new_hydrogen.to_pdb(chain_identifier, residue_serial, residue_suffix, bfactor))
return "\n".join(res)
def to_mgl(self):
res = []
for a in self.atoms:
res.append(a.to_mgl())
return "\n".join(res)
def rotate(self, R):
com = self.get_com()
for a in self.atoms:
a.pos = np.dot(R, a.pos - com) + com
self.compute_as()
def set_com(self, new_com):
com = self.get_com()
for a in self.atoms:
a.pos += new_com - com - COM_SHIFT * self.a1
def set_sugar(self, new_base_back_com):
sugar_com = self.get_com(self.sugar_atoms)
for a in self.atoms:
a.pos += new_base_back_com - sugar_com
self.compute_as()
def set_base(self, new_base_com):
atoms = [v for k, v in self.named_atoms.items() if k in self.ring_names]
ring_com = self.get_com(atoms)
for a in self.atoms:
a.pos += new_base_com - ring_com - BASE_SHIFT * self.a1
self.compute_as()
atoms = property(get_atoms)
class Atom(object):
serial_atom = 1
def __init__(self, pdb_line):
object.__init__(self)
# http://cupnet.net/pdb-format/
self.name = pdb_line[12:16].strip()
# some PDB files have * in place of '
if "*" in self.name:
self.name = self.name.replace("*", "'")
self.alternate = pdb_line[16]
self.residue = pdb_line[17:20].strip()
self.chain_id = pdb_line[21:22].strip()
self.residue_idx = int(pdb_line[22:26])
self.pos = np.array([float(pdb_line[30:38]), float(pdb_line[38:46]), float(pdb_line[46:54])])
def is_hydrogen(self):
return "H" in self.name
def shift(self, diff):
self.pos += diff
def to_pdb(self, chain_identifier, residue_serial, residue_suffix, bfactor):
residue = self.residue + residue_suffix
res = "{:6s}{:5d} {:^4s}{:1s}{:3s} {:1s}{:4d}{:1s} {:8.3f}{:8.3f}{:8.3f}{:6.2f}{:6.2f} {:>2s}{:2s}".format("ATOM", Atom.serial_atom, self.name, " ", residue, chain_identifier, residue_serial, " ", self.pos[0], self.pos[1], self.pos[2], 1.00, bfactor, " ", " ", " ")
Atom.serial_atom += 1
if Atom.serial_atom > 99999:
Atom.serial_atom = 1
return res
def to_mgl(self):
colors = {"C" : "0,1,1", "P" : "1,1,0", "O" : "1,0,0", "H" : "0.5,0.5,0.5", "N" : "0,0,1"}
for c in colors:
if c in self.name: color = colors[c]
r = 0.5
return "%s %s %s @ %f C[%s]" % (self.pos[0], self.pos[1], self.pos[2], r, color)
The MIT License (MIT)
Copyright (c) 2015 Kieran Wynn
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
from .quaternion import Quaternion
"""
This file is part of the pyquaternion python module
Author: Kieran Wynn
Website: https://github.com/KieranWynn/pyquaternion
Documentation: http://kieranwynn.github.io/pyquaternion/
Version: 1.0.0
License: The MIT License (MIT)
Copyright (c) 2015 Kieran Wynn
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
quaternion.py - This file defines the core Quaternion class
"""
from __future__ import absolute_import, division, print_function # Add compatibility for Python 2.7+
from math import sqrt, pi, sin, cos, asin, acos, atan2, exp, log
from copy import deepcopy
import numpy as np # Numpy is required for many vector operations
class Quaternion:
"""Class to represent a 4-dimensional complex number or quaternion.
Quaternion objects can be used generically as 4D numbers,
or as unit quaternions to represent rotations in 3D space.
Attributes:
q: Quaternion 4-vector represented as a Numpy array
"""
def __init__(self, *args, **kwargs):
"""Initialise a new Quaternion object.
See Object Initialisation docs for complete behaviour:
http://kieranwynn.github.io/pyquaternion/initialisation/
"""
s = len(args)
if s == 0:
# No positional arguments supplied
if kwargs:
# Keyword arguments provided
if ("scalar" in kwargs) or ("vector" in kwargs):
scalar = kwargs.get("scalar", 0.0)
if scalar is None:
scalar = 0.0
else:
scalar = float(scalar)
vector = kwargs.get("vector", [])
vector = self._validate_number_sequence(vector, 3)
self.q = np.hstack((scalar, vector))
elif ("real" in kwargs) or ("imaginary" in kwargs):
real = kwargs.get("real", 0.0)
if real is None:
real = 0.0
else:
real = float(real)
imaginary = kwargs.get("imaginary", [])
imaginary = self._validate_number_sequence(imaginary, 3)
self.q = np.hstack((real, imaginary))
elif ("axis" in kwargs) or ("radians" in kwargs) or ("degrees" in kwargs) or ("angle" in kwargs):
try:
axis = self._validate_number_sequence(kwargs["axis"], 3)
except KeyError:
raise ValueError(
"A valid rotation 'axis' parameter must be provided to describe a meaningful rotation."
)
angle = kwargs.get('radians') or self.to_radians(kwargs.get('degrees')) or kwargs.get('angle') or 0.0
self.q = Quaternion._from_axis_angle(axis, angle).q
elif "array" in kwargs:
self.q = self._validate_number_sequence(kwargs["array"], 4)
elif "matrix" in kwargs:
optional_args = {key: kwargs[key] for key in kwargs if key in ['rtol', 'atol']}
self.q = Quaternion._from_matrix(kwargs["matrix"], **optional_args).q
else:
keys = sorted(kwargs.keys())
elements = [kwargs[kw] for kw in keys]
if len(elements) == 1:
r = float(elements[0])
self.q = np.array([r, 0.0, 0.0, 0.0])
else:
self.q = self._validate_number_sequence(elements, 4)
else:
# Default initialisation
self.q = np.array([1.0, 0.0, 0.0, 0.0])
elif s == 1:
# Single positional argument supplied
if isinstance(args[0], Quaternion):
self.q = args[0].q
return
if args[0] is None:
raise TypeError("Object cannot be initialised from {}".format(type(args[0])))
try:
r = float(args[0])
self.q = np.array([r, 0.0, 0.0, 0.0])
return
except TypeError:
pass # If the single argument is not scalar, it should be a sequence
self.q = self._validate_number_sequence(args[0], 4)
return
else:
# More than one positional argument supplied
self.q = self._validate_number_sequence(args, 4)
def __hash__(self):
return hash(tuple(self.q))
def _validate_number_sequence(self, seq, n):
"""Validate a sequence to be of a certain length and ensure it's a numpy array of floats.
Raises:
ValueError: Invalid length or non-numeric value
"""
if seq is None:
return np.zeros(n)
if len(seq) == n:
try:
l = [float(e) for e in seq]
except ValueError:
raise ValueError("One or more elements in sequence <{!r}> cannot be interpreted as a real number".format(seq))
else:
return np.asarray(l)
elif len(seq) == 0:
return np.zeros(n)
else:
raise ValueError("Unexpected number of elements in sequence. Got: {}, Expected: {}.".format(len(seq), n))
# Initialise from matrix
@classmethod
def _from_matrix(cls, matrix, rtol=1e-05, atol=1e-08):
"""Initialise from matrix representation
Create a Quaternion by specifying the 3x3 rotation or 4x4 transformation matrix
(as a numpy array) from which the quaternion's rotation should be created.
"""
try:
shape = matrix.shape
except AttributeError:
raise TypeError("Invalid matrix type: Input must be a 3x3 or 4x4 numpy array or matrix")
if shape == (3, 3):
R = matrix
elif shape == (4, 4):
R = matrix[:-1][:,:-1] # Upper left 3x3 sub-matrix
else:
raise ValueError("Invalid matrix shape: Input must be a 3x3 or 4x4 numpy array or matrix")
# Check matrix properties
if not np.allclose(np.dot(R, R.conj().transpose()), np.eye(3), rtol=rtol, atol=atol):
raise ValueError("Matrix must be orthogonal, i.e. its transpose should be its inverse")
if not np.isclose(np.linalg.det(R), 1.0, rtol=rtol, atol=atol):
raise ValueError("Matrix must be special orthogonal i.e. its determinant must be +1.0")
def decomposition_method(matrix):
""" Method supposedly able to deal with non-orthogonal matrices - NON-FUNCTIONAL!
Based on this method: http://arc.aiaa.org/doi/abs/10.2514/2.4654
"""
x, y, z = 0, 1, 2 # indices
K = np.array([
[R[x, x]-R[y, y]-R[z, z], R[y, x]+R[x, y], R[z, x]+R[x, z], R[y, z]-R[z, y]],
[R[y, x]+R[x, y], R[y, y]-R[x, x]-R[z, z], R[z, y]+R[y, z], R[z, x]-R[x, z]],
[R[z, x]+R[x, z], R[z, y]+R[y, z], R[z, z]-R[x, x]-R[y, y], R[x, y]-R[y, x]],
[R[y, z]-R[z, y], R[z, x]-R[x, z], R[x, y]-R[y, x], R[x, x]+R[y, y]+R[z, z]]
])
K = K / 3.0
e_vals, e_vecs = np.linalg.eig(K)
print('Eigenvalues:', e_vals)
print('Eigenvectors:', e_vecs)
max_index = np.argmax(e_vals)
principal_component = e_vecs[max_index]
return principal_component
def trace_method(matrix):
"""
This code uses a modification of the algorithm described in:
https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf
which is itself based on the method described here:
http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
Altered to work with the column vector convention instead of row vectors
"""
m = matrix.conj().transpose() # This method assumes row-vector and postmultiplication of that vector
if m[2, 2] < 0:
if m[0, 0] > m[1, 1]:
t = 1 + m[0, 0] - m[1, 1] - m[2, 2]
q = [m[1, 2]-m[2, 1], t, m[0, 1]+m[1, 0], m[2, 0]+m[0, 2]]
else:
t = 1 - m[0, 0] + m[1, 1] - m[2, 2]
q = [m[2, 0]-m[0, 2], m[0, 1]+m[1, 0], t, m[1, 2]+m[2, 1]]
else:
if m[0, 0] < -m[1, 1]:
t = 1 - m[0, 0] - m[1, 1] + m[2, 2]
q = [m[0, 1]-m[1, 0], m[2, 0]+m[0, 2], m[1, 2]+m[2, 1], t]
else:
t = 1 + m[0, 0] + m[1, 1] + m[2, 2]
q = [t, m[1, 2]-m[2, 1], m[2, 0]-m[0, 2], m[0, 1]-m[1, 0]]
q = np.array(q)
q *= 0.5 / sqrt(t)
return q
return cls(array=trace_method(R))
# Initialise from axis-angle
@classmethod
def _from_axis_angle(cls, axis, angle):
"""Initialise from axis and angle representation
Create a Quaternion by specifying the 3-vector rotation axis and rotation
angle (in radians) from which the quaternion's rotation should be created.
Params:
axis: a valid numpy 3-vector
angle: a real valued angle in radians
"""
mag_sq = np.dot(axis, axis)
if mag_sq == 0.0:
raise ZeroDivisionError("Provided rotation axis has no length")
# Ensure axis is in unit vector form
if (abs(1.0 - mag_sq) > 1e-12):
axis = axis / sqrt(mag_sq)
theta = angle / 2.0
r = cos(theta)
i = axis * sin(theta)
return cls(r, i[0], i[1], i[2])
@classmethod
def random(cls):
"""Generate a random unit quaternion.
Uniformly distributed across the rotation space
As per: http://planning.cs.uiuc.edu/node198.html
"""
r1, r2, r3 = np.random.random(3)
q1 = sqrt(1.0 - r1) * (sin(2 * pi * r2))
q2 = sqrt(1.0 - r1) * (cos(2 * pi * r2))
q3 = sqrt(r1) * (sin(2 * pi * r3))
q4 = sqrt(r1) * (cos(2 * pi * r3))
return cls(q1, q2, q3, q4)
# Representation
def __str__(self):
"""An informal, nicely printable string representation of the Quaternion object.
"""
return "{:.3f} {:+.3f}i {:+.3f}j {:+.3f}k".format(self.q[0], self.q[1], self.q[2], self.q[3])
def __repr__(self):
"""The 'official' string representation of the Quaternion object.
This is a string representation of a valid Python expression that could be used
to recreate an object with the same value (given an appropriate environment)
"""
return "Quaternion({!r}, {!r}, {!r}, {!r})".format(self.q[0], self.q[1], self.q[2], self.q[3])
def __format__(self, formatstr):
"""Inserts a customisable, nicely printable string representation of the Quaternion object
The syntax for `format_spec` mirrors that of the built in format specifiers for floating point types.
Check out the official Python [format specification mini-language](https://docs.python.org/3.4/library/string.html#formatspec) for details.
"""
if formatstr.strip() == '': # Defualt behaviour mirrors self.__str__()
formatstr = '+.3f'
string = \
"{:" + formatstr +"} " + \
"{:" + formatstr +"}i " + \
"{:" + formatstr +"}j " + \
"{:" + formatstr +"}k"
return string.format(self.q[0], self.q[1], self.q[2], self.q[3])
# Type Conversion
def __int__(self):
"""Implements type conversion to int.
Truncates the Quaternion object by only considering the real
component and rounding to the next integer value towards zero.
Note: to round to the closest integer, use int(round(float(q)))
"""
return int(self.q[0])
def __float__(self):
"""Implements type conversion to float.
Truncates the Quaternion object by only considering the real
component.
"""
return float(self.q[0])
def __complex__(self):
"""Implements type conversion to complex.
Truncates the Quaternion object by only considering the real
component and the first imaginary component.
This is equivalent to a projection from the 4-dimensional hypersphere
to the 2-dimensional complex plane.
"""
return complex(self.q[0], self.q[1])
def __bool__(self):
return not (self == Quaternion(0.0))
def __nonzero__(self):
return not (self == Quaternion(0.0))
def __invert__(self):
return (self == Quaternion(0.0))
# Comparison
def __eq__(self, other):
"""Returns true if the following is true for each element:
`absolute(a - b) <= (atol + rtol * absolute(b))`
"""
if isinstance(other, Quaternion):
r_tol = 1.0e-13
a_tol = 1.0e-14
try:
isEqual = np.allclose(self.q, other.q, rtol=r_tol, atol=a_tol)
except AttributeError:
raise AttributeError("Error in internal quaternion representation means it cannot be compared like a numpy array.")
return isEqual
return self.__eq__(self.__class__(other))
# Negation
def __neg__(self):
return self.__class__(array= -self.q)
# Absolute value
def __abs__(self):
return self.norm
# Addition
def __add__(self, other):
if isinstance(other, Quaternion):
return self.__class__(array=self.q + other.q)
return self + self.__class__(other)
def __iadd__(self, other):
return self + other
def __radd__(self, other):
return self + other
# Subtraction
def __sub__(self, other):
return self + (-other)
def __isub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -(self - other)
# Multiplication
def __mul__(self, other):
if isinstance(other, Quaternion):
return self.__class__(array=np.dot(self._q_matrix(), other.q))
return self * self.__class__(other)
def __imul__(self, other):
return self * other
def __rmul__(self, other):
return self.__class__(other) * self
def __matmul__(self, other):
if isinstance(other, Quaternion):
return self.q.__matmul__(other.q)
return self.__matmul__(self.__class__(other))
def __imatmul__(self, other):
return self.__matmul__(other)
def __rmatmul__(self, other):
return self.__class__(other).__matmul__(self)
# Division
def __div__(self, other):
if isinstance(other, Quaternion):
if other == self.__class__(0.0):
raise ZeroDivisionError("Quaternion divisor must be non-zero")
return self * other.inverse
return self.__div__(self.__class__(other))
def __idiv__(self, other):
return self.__div__(other)
def __rdiv__(self, other):
return self.__class__(other) * self.inverse
def __truediv__(self, other):
return self.__div__(other)
def __itruediv__(self, other):
return self.__idiv__(other)
def __rtruediv__(self, other):
return self.__rdiv__(other)
# Exponentiation
def __pow__(self, exponent):
# source: https://en.wikipedia.org/wiki/Quaternion#Exponential.2C_logarithm.2C_and_power
exponent = float(exponent) # Explicitly reject non-real exponents
norm = self.norm
if norm > 0.0:
try:
n, theta = self.polar_decomposition
except ZeroDivisionError:
# quaternion is a real number (no vector or imaginary part)
return Quaternion(scalar=self.scalar ** exponent)
return (self.norm ** exponent) * Quaternion(scalar=cos(exponent * theta), vector=(n * sin(exponent * theta)))
return Quaternion(self)
def __ipow__(self, other):
return self ** other
def __rpow__(self, other):
return other ** float(self)
# Quaternion Features
def _vector_conjugate(self):
return np.hstack((self.q[0], -self.q[1:4]))
def _sum_of_squares(self):
return np.dot(self.q, self.q)
@property
def conjugate(self):
"""Quaternion conjugate, encapsulated in a new instance.
For a unit quaternion, this is the same as the inverse.
Returns:
A new Quaternion object clone with its vector part negated
"""
return self.__class__(scalar=self.scalar, vector=-self.vector)
@property
def inverse(self):
"""Inverse of the quaternion object, encapsulated in a new instance.
For a unit quaternion, this is the inverse rotation, i.e. when combined with the original rotation, will result in the null rotation.
Returns:
A new Quaternion object representing the inverse of this object
"""
ss = self._sum_of_squares()
if ss > 0:
return self.__class__(array=(self._vector_conjugate() / ss))
else:
raise ZeroDivisionError("a zero quaternion (0 + 0i + 0j + 0k) cannot be inverted")
@property
def norm(self):
"""L2 norm of the quaternion 4-vector.
This should be 1.0 for a unit quaternion (versor)
Slow but accurate. If speed is a concern, consider using _fast_normalise() instead
Returns:
A scalar real number representing the square root of the sum of the squares of the elements of the quaternion.
"""
mag_squared = self._sum_of_squares()
return sqrt(mag_squared)
@property
def magnitude(self):
return self.norm
def _normalise(self):
"""Object is guaranteed to be a unit quaternion after calling this
operation UNLESS the object is equivalent to Quaternion(0)
"""
if not self.is_unit():
n = self.norm
if n > 0:
self.q = self.q / n
def _fast_normalise(self):
"""Normalise the object to a unit quaternion using a fast approximation method if appropriate.
Object is guaranteed to be a quaternion of approximately unit length
after calling this operation UNLESS the object is equivalent to Quaternion(0)
"""
if not self.is_unit():
mag_squared = np.dot(self.q, self.q)
if (mag_squared == 0):
return
if (abs(1.0 - mag_squared) < 2.107342e-08):
mag = ((1.0 + mag_squared) / 2.0) # More efficient. Pade approximation valid if error is small
else:
mag = sqrt(mag_squared) # Error is too big, take the performance hit to calculate the square root properly
self.q = self.q / mag
@property
def normalised(self):
"""Get a unit quaternion (versor) copy of this Quaternion object.
A unit quaternion has a `norm` of 1.0
Returns:
A new Quaternion object clone that is guaranteed to be a unit quaternion
"""
q = Quaternion(self)
q._normalise()
return q
@property
def polar_unit_vector(self):
vector_length = np.linalg.norm(self.vector)
if vector_length <= 0.0:
raise ZeroDivisionError('Quaternion is pure real and does not have a unique unit vector')
return self.vector / vector_length
@property
def polar_angle(self):
return acos(self.scalar / self.norm)
@property
def polar_decomposition(self):
"""
Returns the unit vector and angle of a non-scalar quaternion according to the following decomposition
q = q.norm() * (e ** (q.polar_unit_vector * q.polar_angle))
source: https://en.wikipedia.org/wiki/Polar_decomposition#Quaternion_polar_decomposition
"""
return self.polar_unit_vector, self.polar_angle
@property
def unit(self):
return self.normalised
def is_unit(self, tolerance=1e-14):
"""Determine whether the quaternion is of unit length to within a specified tolerance value.
Params:
tolerance: [optional] maximum absolute value by which the norm can differ from 1.0 for the object to be considered a unit quaternion. Defaults to `1e-14`.
Returns:
`True` if the Quaternion object is of unit length to within the specified tolerance value. `False` otherwise.
"""
return abs(1.0 - self._sum_of_squares()) < tolerance # if _sum_of_squares is 1, norm is 1. This saves a call to sqrt()
def _q_matrix(self):
"""Matrix representation of quaternion for multiplication purposes.
"""
return np.array([
[self.q[0], -self.q[1], -self.q[2], -self.q[3]],
[self.q[1], self.q[0], -self.q[3], self.q[2]],
[self.q[2], self.q[3], self.q[0], -self.q[1]],
[self.q[3], -self.q[2], self.q[1], self.q[0]]])
def _q_bar_matrix(self):
"""Matrix representation of quaternion for multiplication purposes.
"""
return np.array([
[self.q[0], -self.q[1], -self.q[2], -self.q[3]],
[self.q[1], self.q[0], self.q[3], -self.q[2]],
[self.q[2], -self.q[3], self.q[0], self.q[1]],
[self.q[3], self.q[2], -self.q[1], self.q[0]]])
def _rotate_quaternion(self, q):
"""Rotate a quaternion vector using the stored rotation.
Params:
q: The vector to be rotated, in quaternion form (0 + xi + yj + kz)
Returns:
A Quaternion object representing the rotated vector in quaternion from (0 + xi + yj + kz)
"""
self._normalise()
return self * q * self.conjugate
def rotate(self, vector):
"""Rotate a 3D vector by the rotation stored in the Quaternion object.
Params:
vector: A 3-vector specified as any ordered sequence of 3 real numbers corresponding to x, y, and z values.
Some types that are recognised are: numpy arrays, lists and tuples.
A 3-vector can also be represented by a Quaternion object who's scalar part is 0 and vector part is the required 3-vector.
Thus it is possible to call `Quaternion.rotate(q)` with another quaternion object as an input.
Returns:
The rotated vector returned as the same type it was specified at input.
Raises:
TypeError: if any of the vector elements cannot be converted to a real number.
ValueError: if `vector` cannot be interpreted as a 3-vector or a Quaternion object.
"""
if isinstance(vector, Quaternion):
return self._rotate_quaternion(vector)
q = Quaternion(vector=vector)
a = self._rotate_quaternion(q).vector
if isinstance(vector, list):
l = [x for x in a]
return l
elif isinstance(vector, tuple):
l = [x for x in a]
return tuple(l)
else:
return a
@classmethod
def exp(cls, q):
"""Quaternion Exponential.
Find the exponential of a quaternion amount.
Params:
q: the input quaternion/argument as a Quaternion object.
Returns:
A quaternion amount representing the exp(q). See [Source](https://math.stackexchange.com/questions/1030737/exponential-function-of-quaternion-derivation for more information and mathematical background).
Note:
The method can compute the exponential of any quaternion.
"""
tolerance = 1e-17
v_norm = np.linalg.norm(q.vector)
vec = q.vector
if v_norm > tolerance:
vec = vec / v_norm
magnitude = exp(q.scalar)
return Quaternion(scalar = magnitude * cos(v_norm), vector = magnitude * sin(v_norm) * vec)
@classmethod
def log(cls, q):
"""Quaternion Logarithm.
Find the logarithm of a quaternion amount.
Params:
q: the input quaternion/argument as a Quaternion object.
Returns:
A quaternion amount representing log(q) := (log(|q|), v/|v|acos(w/|q|)).
Note:
The method computes the logarithm of general quaternions. See [Source](https://math.stackexchange.com/questions/2552/the-logarithm-of-quaternion/2554#2554) for more details.
"""
v_norm = np.linalg.norm(q.vector)
q_norm = q.norm
tolerance = 1e-17
if q_norm < tolerance:
# 0 quaternion - undefined
return Quaternion(scalar=-float('inf'), vector=float('nan')*q.vector)
if v_norm < tolerance:
# real quaternions - no imaginary part
return Quaternion(scalar=log(q_norm), vector=[0, 0, 0])
vec = q.vector / v_norm
return Quaternion(scalar=log(q_norm), vector=acos(q.scalar/q_norm)*vec)
@classmethod
def exp_map(cls, q, eta):
"""Quaternion exponential map.
Find the exponential map on the Riemannian manifold described
by the quaternion space.
Params:
q: the base point of the exponential map, i.e. a Quaternion object
eta: the argument of the exponential map, a tangent vector, i.e. a Quaternion object
Returns:
A quaternion p such that p is the endpoint of the geodesic starting at q
in the direction of eta, having the length equal to the magnitude of eta.
Note:
The exponential map plays an important role in integrating orientation
variations (e.g. angular velocities). This is done by projecting
quaternion tangent vectors onto the quaternion manifold.
"""
return q * Quaternion.exp(eta)
@classmethod
def sym_exp_map(cls, q, eta):
"""Quaternion symmetrized exponential map.
Find the symmetrized exponential map on the quaternion Riemannian
manifold.
Params:
q: the base point as a Quaternion object
eta: the tangent vector argument of the exponential map
as a Quaternion object
Returns:
A quaternion p.
Note:
The symmetrized exponential formulation is akin to the exponential
formulation for symmetric positive definite tensors [Source](http://www.academia.edu/7656761/On_the_Averaging_of_Symmetric_Positive-Definite_Tensors)
"""
sqrt_q = q ** 0.5
return sqrt_q * Quaternion.exp(eta) * sqrt_q
@classmethod
def log_map(cls, q, p):
"""Quaternion logarithm map.
Find the logarithm map on the quaternion Riemannian manifold.
Params:
q: the base point at which the logarithm is computed, i.e.
a Quaternion object
p: the argument of the quaternion map, a Quaternion object
Returns:
A tangent vector having the length and direction given by the
geodesic joining q and p.
"""
return Quaternion.log(q.inverse * p)
@classmethod
def sym_log_map(cls, q, p):
"""Quaternion symmetrized logarithm map.
Find the symmetrized logarithm map on the quaternion Riemannian manifold.
Params:
q: the base point at which the logarithm is computed, i.e.
a Quaternion object
p: the argument of the quaternion map, a Quaternion object
Returns:
A tangent vector corresponding to the symmetrized geodesic curve formulation.
Note:
Information on the symmetrized formulations given in [Source](https://www.researchgate.net/publication/267191489_Riemannian_L_p_Averaging_on_Lie_Group_of_Nonzero_Quaternions).
"""
inv_sqrt_q = (q ** (-0.5))
return Quaternion.log(inv_sqrt_q * p * inv_sqrt_q)
@classmethod
def absolute_distance(cls, q0, q1):
"""Quaternion absolute distance.
Find the distance between two quaternions accounting for the sign ambiguity.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive scalar corresponding to the chord of the shortest path/arc that
connects q0 to q1.
Note:
This function does not measure the distance on the hypersphere, but
it takes into account the fact that q and -q encode the same rotation.
It is thus a good indicator for rotation similarities.
"""
q0_minus_q1 = q0 - q1
q0_plus_q1 = q0 + q1
d_minus = q0_minus_q1.norm
d_plus = q0_plus_q1.norm
if d_minus < d_plus:
return d_minus
else:
return d_plus
@classmethod
def distance(cls, q0, q1):
"""Quaternion intrinsic distance.
Find the intrinsic geodesic distance between q0 and q1.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive amount corresponding to the length of the geodesic arc
connecting q0 to q1.
Note:
Although the q0^(-1)*q1 != q1^(-1)*q0, the length of the path joining
them is given by the logarithm of those product quaternions, the norm
of which is the same.
"""
q = Quaternion.log_map(q0, q1)
return q.norm
@classmethod
def sym_distance(cls, q0, q1):
"""Quaternion symmetrized distance.
Find the intrinsic symmetrized geodesic distance between q0 and q1.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive amount corresponding to the length of the symmetrized
geodesic curve connecting q0 to q1.
Note:
This formulation is more numerically stable when performing
iterative gradient descent on the Riemannian quaternion manifold.
However, the distance between q and -q is equal to pi, rendering this
formulation not useful for measuring rotation similarities when the
samples are spread over a "solid" angle of more than pi/2 radians
(the spread refers to quaternions as point samples on the unit hypersphere).
"""
q = Quaternion.sym_log_map(q0, q1)
return q.norm
@classmethod
def slerp(cls, q0, q1, amount=0.5):
"""Spherical Linear Interpolation between quaternions.
Implemented as described in https://en.wikipedia.org/wiki/Slerp
Find a valid quaternion rotation at a specified distance along the
minor arc of a great circle passing through any two existing quaternion
endpoints lying on the unit radius hypersphere.
This is a class method and is called as a method of the class itself rather than on a particular instance.
Params:
q0: first endpoint rotation as a Quaternion object
q1: second endpoint rotation as a Quaternion object
amount: interpolation parameter between 0 and 1. This describes the linear placement position of
the result along the arc between endpoints; 0 being at `q0` and 1 being at `q1`.
Defaults to the midpoint (0.5).
Returns:
A new Quaternion object representing the interpolated rotation. This is guaranteed to be a unit quaternion.
Note:
This feature only makes sense when interpolating between unit quaternions (those lying on the unit radius hypersphere).
Calling this method will implicitly normalise the endpoints to unit quaternions if they are not already unit length.
"""
# Ensure quaternion inputs are unit quaternions and 0 <= amount <=1
q0._fast_normalise()
q1._fast_normalise()
amount = np.clip(amount, 0, 1)
dot = np.dot(q0.q, q1.q)
# If the dot product is negative, slerp won't take the shorter path.
# Note that v1 and -v1 are equivalent when the negation is applied to all four components.
# Fix by reversing one quaternion
if dot < 0.0:
q0.q = -q0.q
dot = -dot
# sin_theta_0 can not be zero
if dot > 0.9995:
qr = Quaternion(q0.q + amount * (q1.q - q0.q))
qr._fast_normalise()
return qr
theta_0 = np.arccos(dot) # Since dot is in range [0, 0.9995], np.arccos() is safe
sin_theta_0 = np.sin(theta_0)
theta = theta_0 * amount
sin_theta = np.sin(theta)
s0 = np.cos(theta) - dot * sin_theta / sin_theta_0
s1 = sin_theta / sin_theta_0
qr = Quaternion((s0 * q0.q) + (s1 * q1.q))
qr._fast_normalise()
return qr
@classmethod
def intermediates(cls, q0, q1, n, include_endpoints=False):
"""Generator method to get an iterable sequence of `n` evenly spaced quaternion
rotations between any two existing quaternion endpoints lying on the unit
radius hypersphere.
This is a convenience function that is based on `Quaternion.slerp()` as defined above.
This is a class method and is called as a method of the class itself rather than on a particular instance.
Params:
q_start: initial endpoint rotation as a Quaternion object
q_end: final endpoint rotation as a Quaternion object
n: number of intermediate quaternion objects to include within the interval
include_endpoints: [optional] if set to `True`, the sequence of intermediates
will be 'bookended' by `q_start` and `q_end`, resulting in a sequence length of `n + 2`.
If set to `False`, endpoints are not included. Defaults to `False`.
Yields:
A generator object iterating over a sequence of intermediate quaternion objects.
Note:
This feature only makes sense when interpolating between unit quaternions (those lying on the unit radius hypersphere).
Calling this method will implicitly normalise the endpoints to unit quaternions if they are not already unit length.
"""
step_size = 1.0 / (n + 1)
if include_endpoints:
steps = [i * step_size for i in range(0, n + 2)]
else:
steps = [i * step_size for i in range(1, n + 1)]
for step in steps:
yield cls.slerp(q0, q1, step)
def derivative(self, rate):
"""Get the instantaneous quaternion derivative representing a quaternion rotating at a 3D rate vector `rate`
Params:
rate: numpy 3-array (or array-like) describing rotation rates about the global x, y and z axes respectively.
Returns:
A unit quaternion describing the rotation rate
"""
rate = self._validate_number_sequence(rate, 3)
return 0.5 * self * Quaternion(vector=rate)
def integrate(self, rate, timestep):
"""Advance a time varying quaternion to its value at a time `timestep` in the future.
The Quaternion object will be modified to its future value.
It is guaranteed to remain a unit quaternion.
Params:
rate: numpy 3-array (or array-like) describing rotation rates about the
global x, y and z axes respectively.
timestep: interval over which to integrate into the future.
Assuming *now* is `T=0`, the integration occurs over the interval
`T=0` to `T=timestep`. Smaller intervals are more accurate when
`rate` changes over time.
Note:
The solution is closed form given the assumption that `rate` is constant
over the interval of length `timestep`.
"""
self._fast_normalise()
rate = self._validate_number_sequence(rate, 3)
rotation_vector = rate * timestep
rotation_norm = np.linalg.norm(rotation_vector)
if rotation_norm > 0:
axis = rotation_vector / rotation_norm
angle = rotation_norm
q2 = Quaternion(axis=axis, angle=angle)
self.q = (self * q2).q
self._fast_normalise()
@property
def rotation_matrix(self):
"""Get the 3x3 rotation matrix equivalent of the quaternion rotation.
Returns:
A 3x3 orthogonal rotation matrix as a 3x3 Numpy array
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
self._normalise()
product_matrix = np.dot(self._q_matrix(), self._q_bar_matrix().conj().transpose())
return product_matrix[1:][:, 1:]
@property
def transformation_matrix(self):
"""Get the 4x4 homogeneous transformation matrix equivalent of the quaternion rotation.
Returns:
A 4x4 homogeneous transformation matrix as a 4x4 Numpy array
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
t = np.array([[0.0], [0.0], [0.0]])
Rt = np.hstack([self.rotation_matrix, t])
return np.vstack([Rt, np.array([0.0, 0.0, 0.0, 1.0])])
@property
def yaw_pitch_roll(self):
"""Get the equivalent yaw-pitch-roll angles aka. intrinsic Tait-Bryan angles following the z-y'-x'' convention
Returns:
yaw: rotation angle around the z-axis in radians, in the range `[-pi, pi]`
pitch: rotation angle around the y'-axis in radians, in the range `[-pi/2, -pi/2]`
roll: rotation angle around the x''-axis in radians, in the range `[-pi, pi]`
The resulting rotation_matrix would be R = R_x(roll) R_y(pitch) R_z(yaw)
Note:
This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
self._normalise()
yaw = np.arctan2(2 * (self.q[0] * self.q[3] - self.q[1] * self.q[2]),
1 - 2 * (self.q[2] ** 2 + self.q[3] ** 2))
pitch = np.arcsin(2 * (self.q[0] * self.q[2] + self.q[3] * self.q[1]))
roll = np.arctan2(2 * (self.q[0] * self.q[1] - self.q[2] * self.q[3]),
1 - 2 * (self.q[1] ** 2 + self.q[2] ** 2))
return yaw, pitch, roll
def _wrap_angle(self, theta):
"""Helper method: Wrap any angle to lie between -pi and pi
Odd multiples of pi are wrapped to +pi (as opposed to -pi)
"""
result = ((theta + pi) % (2 * pi)) - pi
if result == -pi:
result = pi
return result
def get_axis(self, undefined=np.zeros(3)):
"""Get the axis or vector about which the quaternion rotation occurs
For a null rotation (a purely real quaternion), the rotation angle will
always be `0`, but the rotation axis is undefined.
It is by default assumed to be `[0, 0, 0]`.
Params:
undefined: [optional] specify the axis vector that should define a null rotation.
This is geometrically meaningless, and could be any of an infinite set of vectors,
but can be specified if the default (`[0, 0, 0]`) causes undesired behaviour.
Returns:
A Numpy unit 3-vector describing the Quaternion object's axis of rotation.
Note:
This feature only makes sense when referring to a unit quaternion.
Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
tolerance = 1e-17
self._normalise()
norm = np.linalg.norm(self.vector)
if norm < tolerance:
# Here there are an infinite set of possible axes, use what has been specified as an undefined axis.
return undefined
else:
return self.vector / norm
@property
def axis(self):
return self.get_axis()
@property
def angle(self):
"""Get the angle (in radians) describing the magnitude of the quaternion rotation about its rotation axis.
This is guaranteed to be within the range (-pi:pi) with the direction of
rotation indicated by the sign.
When a particular rotation describes a 180 degree rotation about an arbitrary
axis vector `v`, the conversion to axis / angle representation may jump
discontinuously between all permutations of `(-pi, pi)` and `(-v, v)`,
each being geometrically equivalent (see Note in documentation).
Returns:
A real number in the range (-pi:pi) describing the angle of rotation
in radians about a Quaternion object's axis of rotation.
Note:
This feature only makes sense when referring to a unit quaternion.
Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
"""
self._normalise()
norm = np.linalg.norm(self.vector)
return self._wrap_angle(2.0 * atan2(norm, self.scalar))
@property
def degrees(self):
return self.to_degrees(self.angle)
@property
def radians(self):
return self.angle
@property
def scalar(self):
""" Return the real or scalar component of the quaternion object.
Returns:
A real number i.e. float
"""
return self.q[0]
@property
def vector(self):
""" Return the imaginary or vector component of the quaternion object.
Returns:
A numpy 3-array of floats. NOT guaranteed to be a unit vector
"""
return self.q[1:4]
@property
def real(self):
return self.scalar
@property
def imaginary(self):
return self.vector
@property
def w(self):
return self.q[0]
@property
def x(self):
return self.q[1]
@property
def y(self):
return self.q[2]
@property
def z(self):
return self.q[3]
@property
def elements(self):
""" Return all the elements of the quaternion object.
Returns:
A numpy 4-array of floats. NOT guaranteed to be a unit vector
"""
return self.q
def __getitem__(self, index):
index = int(index)
return self.q[index]
def __setitem__(self, index, value):
index = int(index)
self.q[index] = float(value)
def __copy__(self):
result = self.__class__(self.q)
return result
def __deepcopy__(self, memo):
result = self.__class__(deepcopy(self.q, memo))
memo[id(self)] = result
return result
@staticmethod
def to_degrees(angle_rad):
if angle_rad is not None:
return float(angle_rad) / pi * 180.0
@staticmethod
def to_radians(angle_deg):
if angle_deg is not None:
return float(angle_deg) / 180.0 * pi
import numpy as np
import sys
SECTIONS = set([
'Atoms',
'Velocities',
'Ellipsoids',
'Bonds',
])
HEADERS = set([
'atoms',
'bonds',
'atom types',
'bond types',
'ellipsoids',
'xlo xhi',
'ylo yhi',
'zlo zhi',
])
class Lammps_parser(object):
def __init__(self, filename):
self.filename = filename
head, sects = self.grab_datafile()
self.natoms = int(head['atoms'])
self.nbonds = int(head['bonds'])
self.nellipsoids = int(head['ellipsoids'])
x1, x2 = np.float32(head['xlo xhi'].split())
self.Lx = x2 - x1
y1, y2 = np.float32(head['ylo yhi'].split())
self.Ly = y2 - y1
z1, z2 = np.float32(head['zlo zhi'].split())
self.Lz = z2 - z1
self.parse_Atoms_header(sects['Atoms'])
self.parse_bonds(sects['Bonds'])
self.parse_ellipsoids(sects['Ellipsoids'])
self.parse_velocities(sects['Velocities'])
# checking the nucleotides have indexes ordered the same way as bonds and are compatible with strands
for i in range(self.natoms):
next_bond = self.bonds[i][1]
if next_bond != -1:
#check the consecutive bond is on the same strand
if self.strand[i] != self.strand[next_bond]:
print("Wrong bond arising between two different strands", file=sys.stderr)
#check the right bond is an higher index (except from the circular closure)
if next_bond == i-1:
print("The bonds should be in incremental order (i i+1) except for strand circularization N 0", file=sys.stderr)
if next_bond > i+1:
print("The bonds should be in incremental order (i i+1) except for strand circularization N 0", file=sys.stderr)
if next_bond < i+1:
if self.bonds[next_bond][1] != next_bond + 1:
print("The bonds should be in incremental order (i i+1) except for strand circularization N 0", file=sys.stderr)
# more check to insert about completely random ordering
def parse_Atoms_header(self, datalines):
if self.natoms != len(datalines):
raise ValueError("Number of atoms in header %d and in Atoms %d do not coincide" % (self.natoms, len(datalines)))
# Fields per line
if len(datalines[1].split()) < 8:
raise ValueError("Atoms section should be the default one # Atom-ID, type, position, molecule-ID, ellipsoid flag, density with at least 8 columns and not %d" % len(datalines[1].split()))
N = self.natoms
# atom ids aren't necessarily sequential
self.bases = np.zeros(N, dtype=int)
self.strand = np.zeros(N, dtype=int)
self.xyz = np.zeros((N, 3), dtype=float)
for _, line in enumerate(datalines):
line = line.split()
index = int(line[0]) - 1
self.bases[index] = line[1]
self.strand[index] = line[5]
self.xyz[index, :] = line[2:5]
self.nstrands = len(np.unique(self.strand))
def parse_velocities(self, datalines):
if self.natoms != len(datalines):
raise ValueError("Velocities section do not contain the same amount of particles as number of atoms %d != %d " % self.natoms, len(datalines))
if len(datalines[1].split()) != 7:
raise ValueError("Velocities section should be the default one # Atom-ID, translational, rotational velocity with 7 columns and not %d" % len(datalines[1].split()))
else:
N = self.natoms
self.v = np.zeros((N, 3), dtype=float)
self.Lv = np.zeros((N, 3), dtype=float)
for _, line in enumerate(datalines):
line = line.split()
index = int(line[0]) - 1
self.v[index] = line[1:4]
self.Lv[index] = line[4:7]
def _N_strands_from_bonds(self, bonds):
'''
This method partition nucleotides into strands according to their nearest neighbours and returns the number of such strands.
'''
def flip_neighs(bonds, clusters, i):
for neigh in bonds[i]:
if clusters[i] > clusters[neigh]:
clusters[i] = clusters[neigh]
flip_neighs(bonds, clusters, neigh)
N = len(bonds)
strands = np.arange(0, N, 1, dtype=np.int_)
for i in range(N):
flip_neighs(bonds, strands, i)
return len(np.unique(strands))
def parse_bonds(self, datalines):
if len(datalines[1].split()) != 4:
raise ValueError("Bonds section should have 4 columns and not %d" % len(datalines[1].split()))
if self.nbonds != len(datalines):
raise ValueError("Number of atoms in header %d and in Bonds %d do not coincide" % self.nbonds, len(datalines))
# creating a vector indicating for each particle who it is bonded too on its left and right in order of increasing index
natoms = self.natoms
self.bonds = np.ones((natoms, 2), dtype=int) * (-1)
for _, line in enumerate(datalines):
line = line.split()
p1 = int(line[2]) - 1
p2 = int(line[3]) - 1
self.bonds[p1][1] = p2
self.bonds[p2][0] = p1
N_strands = self._N_strands_from_bonds(self.bonds)
if N_strands != self.nstrands:
raise ValueError("There is a mismatch between the number of strands as detected by the Atoms (%d) and Bonds (%d) sections" % (self.nstrands, N_strands))
N_ends_3p = 0
N_ends_5p = 0
for b in self.bonds:
if b[0] == -1:
N_ends_3p += 1
elif b[1] == -1:
N_ends_5p += 1
if N_ends_3p != N_ends_5p:
raise ValueError("There is a mismatch between the number of 3' ends (%d) and 5' ends (%d)" % (N_ends_3p, N_ends_5p), file=sys.stderr)
def parse_ellipsoids(self, datalines):
if len(datalines[1].split()) != 8:
raise ValueError("Ellipsoid section should be the default one # Atom-ID, shape, quaternion with 8 columns and not %d" % len(datalines[1].split()))
if self.nellipsoids != len(datalines):
raise ValueError("Number of ellipsoids in header %d and in Bonds %d do not coincide" % self.nellipsoids, len(datalines))
nellipsoids = self.nellipsoids
self.ellipsoids = np.zeros((nellipsoids, 4), dtype=float)
for _, line in enumerate(datalines):
line = line.split()
index = int(line[0]) - 1
self.ellipsoids[index, :] = line[4:8]
def iterdata(self):
with open(self.filename) as f:
for line in f:
line = line.partition('#')[0].strip()
if line:
yield line
def grab_datafile(self):
f = list(self.iterdata())
starts = [i for i, line in enumerate(f)
if line.split()[0] in SECTIONS]
starts += [None]
# we save here the lammps init header information (mass, N, etc)
header = {}
for line in f[:starts[0]]:
for token in HEADERS:
if line.endswith(token):
header[token] = line.split(token)[0]
# we associate to each section the content (Atoms, Bonds, etc)
sects = {f[l]:f[l + 1:starts[i + 1]] for i, l in enumerate(starts[:-1])}
if 'Atoms' not in sects:
raise ValueError("Data file was missing Atoms section")
return header, sects
from . import base
import numpy as np
import os.path
class LorenzoReader:
def __init__(self, topology, configuration):
self._conf = False
if not os.path.isfile(configuration):
base.Logger.die("Configuration file '%s' is not readable" % configuration)
if not os.path.isfile(topology):
base.Logger.die("Topology file '%s' is not readable" % topology)
self._conf = open(configuration, "r")
f = open(topology, "r")
self.N, self.N_strands = [int(x) for x in f.readline().split()]
self._top_lines = f.readlines()
if len(self._top_lines) != self.N:
raise Exception("The number of nucleotides specified in the topology file header (%d) is different from the number of nucleotide lines found in the same file (%d)" % (self.N, len(self._top_lines)))
def __del__(self):
if self._conf: self._conf.close()
def _read(self, only_strand_ends=False, skip=False):
try:
timeline = self._conf.readline()
time = float(timeline.split()[2])
box = np.array([float(x) for x in self._conf.readline().split()[2:]])
self._conf.readline()
except Exception as e:
raise Exception("The header lines of the configuration file are invalid (caught a '%s' exception)" % e)
if skip:
for tl in self._top_lines:
self._conf.readline()
return False
system = base.System(box, time=time)
base.Nucleotide.index = 0
base.Strand.index = 0
s = False
strandid_current = 0
for i_line, tl in enumerate(self._top_lines):
tls = tl.split()
n3 = int(tls[2])
n5 = int(tls[3])
strandid = int(tls[0])
if (len (tls[1]) == 1):
b = base.base_to_number[tls[1]]
bb = b
else:
try:
tmp = int (tls[1])
except:
raise Exception("The line n. %d in the topology file contains an incorrect specific base pairing" % i_line)
if tmp > 0:
b = tmp % 4
else:
b = (3 - ((3 - tmp) % 4))
bb = tmp
if strandid != strandid_current:
# check for circular strand
if n3 != -1:
iscircular = True
else:
iscircular = False
if s:
system.add_strand(s)
s = base.Strand()
if iscircular:
s.make_circular()
strandid_current = strandid
ls = self._conf.readline().split()
if len(ls) == 0:
raise Exception("The %d-th nucleotide line in the configuration file is empty" % i_line)
elif len(ls) != 15:
raise Exception("The %d-th nucleotide line in the configuration file is invalid" % i_line)
cm = [float(x) for x in ls[0:3]]
a1 = [float(x) for x in ls[3:6]]
a3 = [float(x) for x in ls[6:9]]
v = [float(x) for x in ls[9:12]]
L = [float(x) for x in ls[12:15]]
if not only_strand_ends or n3 == -1 or n5 == -1:
s.add_nucleotide(base.Nucleotide(cm, a1, a3, b, bb, v, L, n3))
system.add_strand(s)
return system
# if only_strand_ends == True then a strand will contain only the first and the last nucleotide
# useful for some analysis like csd for coaxial interactions
def get_system(self, only_strand_ends=False, N_skip=0):
for _ in range(N_skip):
self._read(skip=True)
return self._read(only_strand_ends=only_strand_ends, skip=False)
import numpy as np
import math as mt
import numpy.linalg as la
#angle between vectors (-pi,pi) with a reference direction vplane
def py_ang(v1, v2, vplane):
v1n = v1 / la.norm(v1)
v2n = v2 / la.norm(v2)
return np.arctan2 (la.norm(np.cross(v1n, v2n)) , np.dot (v1n, v2n)) * np.sign(np.dot(np.cross(v1n, v2n), vplane))
def get_twist(axis, ssdna1):
numrows = len(axis)
distn = np.copy(axis)
dist = np.copy(axis)
p = np.copy(axis)
a = np.copy(axis)
TW = 0
#axis vectors
for c in range(0, numrows):
ind = c
ind1 = (c + 1) % numrows
dist[ind, :] = axis[ind1, :] - axis[ind, :]
distn[ind, :] = dist[ind, :] / np.sqrt(np.dot(dist[ind, :], dist[ind, :]))
# print ind,ind1, dist[ind,:],axis[ind,:],axis[ind1,:]
# vector perpendicular to two consecutive axis vectors
for c in range(0, numrows):
ind_1 = (c - 1 + numrows) % numrows
ind = c
p[ind, :] = np.cross(dist[ind_1, :] , dist[ind, :])
p[ind, :] /= np.sqrt(np.dot(p[ind, :] , p[ind, :]))
# print p[ind,0], p[ind,1], p[ind,2]
# axis to base vectors (perpendicular to axis)
weight = 0.5 # 1 #0.5
for c in range(0, numrows):
a[c, :] = weight * ssdna1[c, :] + (1 - weight) * ssdna1[(c - 1 + numrows) % numrows, :] - axis[c, :]
for c in range(0, numrows):
proj = np.dot(a[c, :], distn[c, :])
a[c, :] = a[c, :] - proj * distn[c, :]
# twist angles
for c in range(0, numrows):
ind_1 = (c - 1 + numrows) % numrows
ind = c
# the angle should be computed selecting dist as the axis, so we need to choose the right order
alpha = py_ang(a[ind_1, :] , p[ind, :] , dist[ind_1, :])
gamma = py_ang(p[ind, :] , a[ind, :] , dist[ind, :])
angle = (alpha + gamma + 4 * np.pi) % (2 * np.pi)
# Now we have the angle in 0 - 2pi . if it exceeds pi, let's take angle-2*pi instead
if angle > np.pi:
angle = angle - 2 * np.pi
# print angle
TW += angle / (2 * np.pi)
return TW
#curve xyz coordinate as input
def get_writhe(coordxyz):
numrows = len(coordxyz)
dist = np.copy(coordxyz)
# distn=np.copy(coordxyz)
WR = 0
for c in range(0, numrows):
ind = int(c - mt.floor(c / float(numrows)) * numrows)
ind1 = int(c + 1 - mt.floor((c + 1) / float(numrows)) * numrows)
dist[ind, :] = coordxyz[ind1, :] - coordxyz[ind, :]
# distn[ind,:]=dist[ind,:]/np.sqrt(np.dot(dist[ind,:],dist[ind,:]))
# print ind,ind1, coordxyz[ind,:],coordxyz[ind1,:],dist[ind,:]
for i in range(1, numrows):
for j in range(0, i):
ind_i = int(i - mt.floor(i / float(numrows)) * numrows)
ind_i1 = int(i + 1 - mt.floor((i + 1) / float(numrows)) * numrows)
ind_j = int(j - mt.floor(j / float(numrows)) * numrows)
ind_j1 = int(j + 1 - mt.floor((j + 1) / float(numrows)) * numrows)
r12 = dist[ind_i, :] # rii1
r34 = dist[ind_j, :] # rjj1
r13 = coordxyz[ind_j, :] - coordxyz[ind_i, :] # rij
r23 = coordxyz[ind_j, :] - coordxyz[ind_i1, :] # ri1j
r24 = coordxyz[ind_j1, :] - coordxyz[ind_i1, :] # ri1j1
r14 = coordxyz[ind_j1, :] - coordxyz[ind_i, :] # rij1
# print ind_i,ind_i1,ind_j,ind_j1,r12,dist[ind_i,:],r34,r13,r23,r24,r14
# do action only if 4 points are coplanar (from wolfram), otherwise solid angle is zero
# if(ind_i==ind_j+1):
# if(np.dot( r13 , np.cross(r12,r34) )> 5*mt.exp(-17)):
# print np.dot( r13 , np.cross(r12,r34) ),ind_i,ind_j
if(abs (np.dot(r13 , np.cross(r12, r34))) > 5 * mt.exp(-17)):
n1 = np.cross(r13 , r14)
n1 /= np.sqrt(np.dot(n1, n1))
n2 = np.cross(r14 , r24)
n2 /= np.sqrt(np.dot(n2, n2))
n3 = np.cross(r24 , r23)
n3 /= np.sqrt(np.dot(n3, n3))
n4 = np.cross(r23 , r13)
n4 /= np.sqrt(np.dot(n4, n4))
# print ind_i,ind_j, np.dot( r13 , np.cross(r12,r34) ), n1,n2,n3,n4
wr_loc = np.arcsin(np.dot(n1, n2)) + np.arcsin(np.dot(n2, n3)) + np.arcsin(np.dot(n3, n4)) + np.arcsin(np.dot(n4, n1))
wr_loc = wr_loc * np.sign(np.dot(np.cross(r34 , r12) , r13)) / 4 / np.pi
WR += 2 * wr_loc
# print wr_loc,WR
return WR
import numpy as np
import math
from .base import FLT_EPSILON
def get_angle(a, b):
"""
Get angle between a,b
>>> a = [0, 1, 0]
>>> b = [0, 0, 1]
>>> round(get_angle(a,b),3)
1.571
"""
ab = np.dot(a, b)
if ab > (1. - FLT_EPSILON):
return 0
elif ab < (-1. + FLT_EPSILON):
return np.pi
else:
return np.arccos(ab)
def get_orthonormalized_base(v1, v2, v3):
v1_norm2 = np.dot(v1, v1)
v2_v1 = np.dot(v2, v1)
v2 -= (v2_v1 / v1_norm2) * v1
v3_v1 = np.dot(v3, v1)
v3_v2 = np.dot(v3, v2)
v2_norm2 = np.dot(v2, v2)
v3 -= (v3_v1 / v1_norm2) * v1 + (v3_v2 / v2_norm2) * v2
v1 /= np.sqrt(v1_norm2)
v2 /= np.sqrt(v2_norm2)
v3 /= np.sqrt(np.dot(v3, v3))
return v1, v2, v3
def get_random_vector_in_sphere(r=1):
r2 = r * r
v = np.random.uniform(-r, r, 3)
while np.dot(v, v) > r2:
v = np.random.uniform(-r, r, 3)
return v
def get_random_vector():
ransq = 1.
while ransq >= 1.:
ran1 = 1. - 2. * np.random.random()
ran2 = 1. - 2. * np.random.random()
ransq = ran1 * ran1 + ran2 * ran2
ranh = 2. * np.sqrt(1. - ransq)
return np.array([ran1 * ranh, ran2 * ranh, 1. - 2. * ransq])
def get_random_rotation_matrix():
v1, v2, v3 = get_orthonormalized_base(get_random_vector(), get_random_vector(), get_random_vector())
R = np.array([v1, v2, v3])
# rotations have det == 1
if np.linalg.det(R) < 0: R = np.array([v2, v1, v3])
return R
def get_rotation_matrix(axis, angle):
ct = math.cos(angle)
st = math.sin(angle)
olc = 1. - ct
x, y, z = axis / math.sqrt(np.dot(axis, axis))
return np.array([[olc * x * x + ct, olc * x * y - st * z, olc * x * z + st * y],
[olc * x * y + st * z, olc * y * y + ct, olc * y * z - st * x],
[olc * x * z - st * y, olc * y * z + st * x, olc * z * z + ct]])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment