Skip to content
Snippets Groups Projects
coords.py 7.38 KiB
import numpy as np
from scipy.optimize import newton


def minimizeRmsd(coordsB, coordsA, weights=None, maxIter=100):
    ## Going through many iterations wasn't really needed
    tol = 1
    count = 0

    R = np.eye(3)
    comB = np.zeros([3,])
    cNext = coordsB

    while tol > 1e-6:
        q,cB,comA = _minimizeRmsd(cNext,coordsA, weights)
        R = R.dot(quaternion_to_matrix(q))
        assert( np.all(np.isreal( R )) )

        comB += cB
        cLast = cNext
        cNext = (coordsB-comB).dot(R)

        tol = np.sum(((cNext-cLast)**2)[:]) / np.max(np.shape(coordsB))
        if count > maxIter:
            Exception("Exceeded maxIter (%d)" % maxIter)
        count += 1

    print("%d iterations",count)
    return R, comB, comA


def minimizeRmsd(coordsB, coordsA, weights=None):
    q,comA,comB = _minimizeRmsd(coordsB, coordsA, weights)
    assert( np.all(np.isreal( q )) )
    return quaternion_to_matrix(q),comA,comB


## http://onlinelibrary.wiley.com/doi/10.1002/jcc.21439/full
def _minimizeRmsd(coordsB, coordsA, weights=None):
    A = coordsA
    B = coordsB

    shapeA,shapeB = [np.shape(X) for X in (A,B)]
    for s in (shapeA,shapeB):  assert( len(s) == 2 )

    A,B = [X.T if s[1] > s[0] else X for X,s in zip([A,B],(shapeA,shapeB))] # TODO: print warning

    shapeA,shapeB = [np.shape(X) for X in (A,B)]
    assert( shapeA == shapeB )
    for X,s in zip((A,B),(shapeA,shapeB)):
        assert( s[1] == 3 and s[0] >= s[1] )
    
    # if weights is None: weights = np.ones(len(A))
    if weights is None:
        comA,comB = [np.mean( X, axis=0 ) for X in (A,B)]
    else:
        assert( len(weights[:]) == len(B) )
        W = np.diag(weights)
        comA,comB = [np.sum( W.dot(X), axis=0 ) / np.sum(W) for X in (A,B)]

    A = np.array( A-comA )
    B = np.array( B-comB )

    if weights is None:
        s = A.T.dot(B)
    else:
        s = A.T.dot(W.dot(B))
    
    sxx,sxy,sxz = s[0,:]
    syx,syy,syz = s[1,:]
    szx,szy,szz = s[2,:]
    
    K = [[ sxx+syy+szz, syz-szy, szx-sxz, sxy-syx],
         [syz-szy,  sxx-syy-szz, sxy+syx, sxz+szx],
         [szx-sxz, sxy+syx, -sxx+syy-szz, syz+szy],
         [sxy-syx, sxz+szx, syz+szy, -sxx-syy+szz]]
    K = np.array(K)

    # GA = np.trace( A.T.dot(W.dot(A)) )
    # GB = np.trace( B.T.dot(W.dot(B)) )
        
    ## Finding GA/GB can be done more quickly
    # I = np.eye(4)
    # x0 = (GA+GB)*0.5
    # vals = newtoon(lambda x: np.det(K-x*I), x0 = x0)

    vals, vecs = np.linalg.eig(K)
    i = np.argmax(vals)
    q = vecs[:,i]

    # RMSD = np.sqrt( (GA+GB-2*vals[i]) / len(A) )
    # print("CHECK:", K.dot(q)-vals[i]*q )
    return q, comB, comA

def quaternion_to_matrix(q):
    assert(len(q) == 4)

    ## It looks like the wikipedia article I used employed a less common convention for q (see below
    ## http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions#Rotation_matrix_.E2.86.94_quaternion
    # q1,q2,q3,q4 = q
    # R = [[1-2*(q2*q2 + q3*q3),    2*(q1*q2 - q3*q4),    2*(q1*q3 + q2*q4)],
    #      [  2*(q1*q2 + q3*q4),  1-2*(q1*q1 + q3*q3),    2*(q2*q3 - q1*q4)],
    #      [  2*(q1*q3 - q2*q4),    2*(q1*q4 + q2*q3),  1-2*(q2*q2 + q1*q1)]]

    q0,q1,q2,q3 = q
    R = [[1-2*(q2*q2 + q3*q3),    2*(q1*q2 - q3*q0),    2*(q1*q3 + q2*q0)],
         [  2*(q1*q2 + q3*q0),  1-2*(q1*q1 + q3*q3),    2*(q2*q3 - q1*q0)],
         [  2*(q1*q3 - q2*q0),    2*(q1*q0 + q2*q3),  1-2*(q2*q2 + q1*q1)]]

    return np.array(R)

def quaternion_from_matrix( R ):
    e1 = R[0]
    e2 = R[1]
    e3 = R[2]
    
    # d1 = 0.5 * np.sqrt( 1+R[0,0]+R[1,1]+R[2,2] )
    # d2 = 0.5 * np.sqrt( 1+R[0,0]-R[1,1]-R[2,2] )
    # d2 = 0.5 * np.sqrt( 1+R[0,0]-R[1,1]-R[2,2] )
    # d2 = 0.5 * np.sqrt( 1+R[0,0]-R[1,1]-R[2,2] )

    d1 = 1+R[0,0]+R[1,1]+R[2,2]
    d2 = 1+R[0,0]-R[1,1]-R[2,2]
    d3 = 1-R[0,0]+R[1,1]-R[2,2]
    d4 = 1-R[0,0]-R[1,1]+R[2,2]
    
    maxD = max((d1,d2,d3,d4))
    d = 0.5 / np.sqrt(maxD)

    if d1 == maxD:
        return np.array(( 1.0/(4*d),
                          d * (R[2,1]-R[1,2]),
                          d * (R[0,2]-R[2,0]),
                          d * (R[1,0]-R[0,1]) ))
    elif d2 == maxD:
        return np.array(( d * (R[2,1]-R[1,2]),
                          1.0/(4*d),
                          d * (R[0,1]+R[1,0]),
                          d * (R[0,2]+R[2,0]) ))
    elif d3 == maxD:
        return np.array(( d * (R[0,2]-R[2,0]),
                          d * (R[0,1]+R[1,0]),
                          1.0/(4*d),
                          d * (R[1,2]+R[2,1]) ))
    elif d4 == maxD:
        return np.array(( d * (R[1,0]-R[0,1]),
                          d * (R[0,2]+R[2,0]),
                          d * (R[1,2]+R[2,1]),
                          1.0/(4*d) ))

def rotationAboutAxis(axis,angle, normalizeAxis=True):
    if normalizeAxis: axis = axis / np.linalg.norm(axis)
    angle *= 0.5 * np.pi/180
    cos = np.cos( angle )
    sin = np.sin( angle )
    q = [cos] + [sin*x for x in axis]
    return quaternion_to_matrix(q)

def readArbdCoords(fname):
    coords = []
    with open(fname) as fh:
        for line in fh:
            coords.append([float(x) for x in line.split()[1:]])
    return np.array(coords)

def readAvgArbdCoords(psf,pdb,dcd,rmsdThreshold=3.5):
    import mdtraj as md
    ## align trajectory to pdb
    ref = md.load(pdb, top=pdb)
    sel = md.load(dcd, top=pdb)
    # return ref.xyz[0,:,:]*10

    # ref = sel[-1]
    ids = ref.topology.select("name =~ 'D.*'")
    assert(len(ids) > 3)

    # r0 = ref.xyz[0,ids,:]
    r0 = sel.xyz[-1,ids,:]
    t = -1                      # in case dcd_frames < 3
    for t in range(len(sel.xyz)-2,-1,-1):
        # print(t)
        R,comA,comB = minimizeRmsd(sel.xyz[t,ids,:],r0)
        sel.xyz[t,:,:] = np.array( [(r-comA).dot(R)+comB for r in sel.xyz[t]] )
        rmsd = np.mean( (sel.xyz[t,ids,:]-r0)**2 )
        if rmsd > (0.1*rmsdThreshold)**2:
            break
    t0=t+1
    print( "Averaging coordinates in %s after frame %d" % (dcd, t0) )

    pos = sel.xyz[t0:,:,:]
    pos = np.mean(pos, axis=0)
    return 10*pos               # convert to Angstroms

# def readAvgArbdCoords(psf,pdb,dcd,rmsdThreshold=3.5):
#     import MDAnalysis as md
#     ## align trajectory to pdb
#     from pdb import set_trace
#     set_trace()
#     uref = md.Universe(psf, pdb)
#     usel = md.Universe(psf, dcd)

#     ref = uref.select_atoms("name 'd*'")
#     sel = usel.select_atoms("name 'd*'")

#     # r0 = ref.xyz[0,ids,:]
#     ts = usel.trajectory[-1]
#     ts.frame
#     r0 = sel.positions
#     for t in range(ts.frame-1,-1,-1):
#         print(t)
#         usel.trajectory[t]
#         R,comA,comB = minimizeRmsd(sel.positions,r0)
#         sel.positions = np.array( [(r-comA).dot(R)+comB for r in sel.positions] )
#         rmsd = np.mean( (sel.positions-r0)**2 )
#         if rmsd > (0.1*rmsdThreshold)**2:
#             break
#     t0=t+1
#     print( "Averaging coordinates in %s after frame %d" % (dcd, t0) )


#     pos = sel.xyz[t0:,:,:]
#     pos = np.mean(pos, axis=0)
#     return 10*pos               # convert to Angstroms

def unit_quat_conversions():
    for axis in [[0,0,1],[1,1,1],[1,0,0],[-1,-2,0]]:
        for angle in np.linspace(-180,180,10):
            R = rotationAboutAxis(axis, angle)
            R2 = quaternion_to_matrix( quaternion_from_matrix( R ) )
            if not np.all( np.abs(R-R2) < 0.01 ):
                import pdb
                pdb.set_trace()
                quaternion_to_matrix( quaternion_from_matrix( R ) )


if __name__ == "__main__":
    unit_quat_conversions()