Newer
Older
fh.write("{:>8d} !NBOND\n".format(len(bonds)))
for n1,n2,pot in bonds:
fh.write( "{:d} {:d} ".format(n1.idx+1,n2.idx+1) )
counter += 1
if counter == 3:
fh.write("\n")
counter = 0
fh.write("\n")
return
def writeArbdFiles(self, prefix, numSteps=100000000, timestep=100e-6):
## TODO: save and reference directories and prefixes using member data
d = "potentials"
self._writeArbdCoordFile( prefix + ".coord.txt" )
self._writeArbdBondFile( prefix, directory = d )
self._writeArbdAngleFile( prefix, directory = d )
self._writeArbdDihedralFile( prefix, directory = d )
self._writeArbdExclFile( prefix + ".excludes.txt" )
self._writeArbdPotentialFiles( prefix, directory = d )
self._writeArbdConf( prefix, numSteps, timestep, "%s/%s-" % (d,prefix) )
def _writeArbdCoordFile(self, filename):
with open(filename,'w') as fh:
for n,hid,zid in self.particles:
fh.write("%f %f %f\n" % tuple(x for x in n.position))
def _writeArbdConf(self, prefix, numSteps=100000000, timestep=100e-6, potentialPrefix='' ):
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
## TODO: raise exception if _writeArbdPotentialFiles has not been called
filename = "%s.bd" % prefix
with open(filename,'w') as fh:
fh.write("""seed 1234
timestep %f
steps %d
numberFluct 0
interparticleForce 1
fullLongRange 0
temperature 291
electricField 0.0
outputPeriod 1000
outputEnergyPeriod 1000
outputFormat dcd
decompPeriod 100000
cutoff 40.0
pairlistDistance 80
""" % (timestep, numSteps))
for x in self.getParticleTypesAndCounts():
fh.write("\nparticle %s\nnum %d\n" % x)
## TODO: look up better values in dictionary for particle types
fh.write("gridFile null.dx\ndiffusion 150\n")
fh.write("\ninputCoordinates %s.coord.txt\n" % prefix )
if os.path.exists("test.0.restart"):
fh.write("restartCoordinates test.0.restart\n" )
fh.write("""\n## Interaction potentials
tabulatedPotential 1
## The i@j@file syntax means particle type i will have NB interactions with particle type j using the potential in file
""")
for pair,f in zip(self._particleTypePairIter(), self._nbParamFiles):
i,j,t1,t2 = pair
fh.write("tabulatedFile %d@%d@%s\n" % (i,j,f))
fh.write("\n")
for f in list(set([b[-1].filename(potentialPrefix) for b in self.bonds])):
fh.write("tabulatedBondFile %s\n" % f)
fh.write("\n")
for f in list(set([b[-1].filename(potentialPrefix) for b in self.angles])):
fh.write("tabulatedAngleFile %s\n" % f)
fh.write("\n")
for f in list(set([b[-1].filename(potentialPrefix) for b in self.dihedrals])):
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
fh.write("tabulatedDihedralFile %s\n" % f)
fh.write("""\n## Files that specify connectivity of particles
inputBonds {prefix}.bonds.txt
inputAngles {prefix}.angles.txt
inputDihedrals {prefix}.dihedrals.txt
inputExcludes {prefix}.excludes.txt
""".format( prefix=prefix ))
with open("null.dx",'w') as fh:
fh.write("""object 1 class gridpositions counts 2 2 2
origin -4000.00000 -4000.00000 -4000.00000
delta 8000.00000 0.000000 0.000000
delta 0.000000 8000.00000 0.000000
delta 0.000000 0.000000 8000.00000
object 2 class gridconnections counts 2 2 2
object 3 class array type float rank 0 items 8 data follows
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
attribute "dep" string "positions"
object "density" class field
component "positions" value 1
component "connections" value 2
component "data" value 3
""")
def getParticleTypesAndCounts(self):
return sorted( self.particleTypeCounts.items(), key=lambda x: x[0] )
def _particleTypePairIter(self):
typesAndCounts = self.getParticleTypesAndCounts()
for i in range(len(typesAndCounts)):
t1 = typesAndCounts[i][0]
for j in range(i,len(typesAndCounts)):
t2 = typesAndCounts[j][0]
yield( (i,j,t1,t2) )
def _writeArbdPotentialFiles(self, prefix, directory = "potentials"):
## TODO: remove reduncant directory calls
try:
os.makedirs(directory)
except OSError:
if not os.path.isdir(directory):
raise
pathPrefix = "%s/%s-" % (directory,prefix)
self._writeNonbondedParameterFiles( pathPrefix + "nb" )
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
self._writeBondParameterFiles( pathPrefix )
self._writeAngleParameterFiles( pathPrefix )
self._writeDihedralParameterFiles( pathPrefix )
def _writeHarmonicPotentialFile(self, filename, k, x0, resolution=0.1, xmin=0, xmax=35, maxForce=None, periodicity=None):
x = np.arange( xmin, xmax+resolution*2, resolution )
if periodicity is None:
dx = x-x0
else:
dx = np.mod( x-x0 + 0.5*periodicity, periodicity) - 0.5*periodicity
u = 0.5*k*dx**2
if maxForce is not None:
assert(maxForce > 0)
f = np.diff(u)/np.diff(x)
f[f>maxForce] = maxForce
f[f<-maxForce] = -maxForce
u[0] = 0
u[1:] = np.cumsum(f*np.diff(x))
np.savetxt( filename, np.array([x, u]).T, fmt="%f" )
def _writeNonbondedParameterFiles(self, prefix):
x = np.arange(0, 50, 0.1)
for i,j,t1,t2 in self._particleTypePairIter():
f = "%s.%s-%s.dat" % (prefix, t1, t2)
if t1 == "O" or t2 == "O":
y = np.zeros(np.shape(x))
else:
bps1,bps2 = [float( t[1:] )/10 for t in (t1,t2)]
y = nbPot.nbPot(x, bps1, bps2)
np.savetxt( f, np.array([x, y]).T )
self._nbParamFiles.append(f)
def _writeBondParameterFiles(self, prefix):
for pot in list(set([item[-1] for item in self.bonds])):
pot.write_file(prefix)
for pot in list(set([item[-1] for item in self.angles])):
pot.write_file(prefix)
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
for pot in list(set([item[-1] for item in self.dihedrals])):
pot.write_file(prefix)
def addBond(self, *args):
self.bonds.add(args)
def addAngle(self, *args):
self.angles.add(args)
def addDihedral(self, *args):
self.dihedrals.add(args)
def _buildBonds(self, prefix, directory="potentials"):
self.bonds = set()
## Get intrahelical bonds
for nodes,seps in self._getIntrahelicalBonds():
n1,n2 = nodes
sep, = seps
if n1.type[0] == "d" and n2.type[0] == "d":
k = 10.0/sqrt(sep) # TODO: determine from simulations
d = 3.4*sep
else:
## TODO: get correct numbers from ssDNA model
k = 1.0/sqrt(sep)
d = 5*sep
self.addBond(n1, n2, Bond(k, d))
## Get crossover bonds
for nodes,fwds in self._getCrossoverBonds():
n1,n2 = nodes
self.addBond(n1, n2, Bond(4, 18.5))
## Get crossover bonds
for nodes,fwds in self._getSsCrossoverBonds():
n1,n2 = nodes
self.addBond(n1, n2, Bond(1, 5))
## Get crossover bonds
for nodes,seps in self._getOrientationBonds():
n1,n2 = nodes
self.addBond(n1, n2, Bond(30, 1)) # TODO: improve params
def _buildAngles(self, prefix, directory="potentials"):
kT = 0.58622522 # kcal/mol
for nodes,seps in self._getIntrahelicalAngles():
n1,n2,n3 = nodes
sep1,sep2 = seps
sep = sep1+sep2
if n1.type[0] == "d" and n2.type[0] == "d" and n3.type[0] == "d":
## <cos(q)> = exp(-s/Lp) = integrate( x^4 exp(-A x^2) / 2, {x, 0, pi} ) / integrate( x^2 exp(-A x^2), {x, 0, pi} )
## <cos(q)> ~ 1 - 3/4A
## where A = k_spring / (2 kT)
k = 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2
# k *= 5
else:
## TODO: get correct number from ssDNA model
k = 1.5 * kT * (1.0 / (1-exp(-float(sep)/3))) * 0.00030461742; # kcal_mol/degree^2
## Intrahelical 180 deg orientation angles
if None not in [n.orientationNode for n in nodes]:
k *= 0.5 # halve spring constant because using 2 springs
args = [n.orientationNode for n in nodes]
args.append( Angle(k,180) )
self.addAngle( *args )
self.addAngle( n1,n2,n3,Angle(k,180) )
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
a,d = self._getCrossoverAnglesAndDihedrals()
for nodes,sep in a:
n1,n2,n3 = nodes
k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2
self.addAngle( n1,n2,n3,Angle(k,90) )
## Intrahelical 90 deg orientation angles
for nodes,seps in self._getOrientationAngles():
n1,n2,n3 = nodes
sep = np.sum(seps)
k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2
self.addAngle( n1,n2,n3,Angle(k,90) )
## Crossover orientation angles
for nodes,fwds in self._getCrossoverBonds():
n1,n2 = nodes
f1,f2 = fwds
o1,o2 = [n.orientationNode for n in nodes]
k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(1)/147))) * 0.00030461742; # kcal_mol/degree^2
if o1 is not None:
t0 = 90 + 60
if f1: t0 -= 120
self.addAngle( o1,n1,n2,Angle(k,t0) )
if o2 is not None:
t0 = 90 + 60
if f2: t0 -= 120
self.addAngle( n1,n2,o2,Angle(k,t0) )
def _buildDihedrals(self, prefix, directory="potentials"):
kT = 0.58622522 # kcal/mol
a,d = self._getCrossoverAnglesAndDihedrals()
for nodes,sep,isFwd1,isFwd2 in d:
n1,n2,n3,n4 = nodes
## <cos(q)> = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} )
## Assume A is small
## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/
## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]]
## Actually, without assumptions I get fitFun below
## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405
## units "3e-19 erg cm/ 295 k K" "nm" =~ 73
Lp = self.twistPersistenceLength/0.34 # set semi-arbitrarily as there is a large spread in literature
fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - exp(-sep/Lp)
k = opt.leastsq( fitFun, x0=exp(-sep/Lp) )
k = k[0][0] * 2*kT*0.00030461742
# intrinsicDegrees=30
# fitFun = lambda x: (1.0/(2*x) - 2*np.sqrt(np.pi)*np.exp(-4*np.pi**2*x) / (np.sqrt(x)*erf(2*np.pi*np.sqrt(x))) ) - \
# ( (intrinsicDegrees*np.pi/180)**2 + 2*(1-exp(-sep/Lp)) )
# k = opt.leastsq( fitFun, x0=1/(1-exp(-sep/Lp)) )
# k = k[0][0] * 2*kT*0.00030461742
t0 = sep*(360.0/10.5)
# pdb.set_trace()
if isFwd1[0]: t0 -= 120
if isFwd2[0]: t0 += 120
t0 = t0 % 360
# if n2.idx == 0:
# print( n1.idx,n2.idx,n3.idx,n4.idx,k,t0,sep )
self.addDihedral( n1,n2,n3,n4,Dihedral(k,t0) )
for nodes,seps in self._getOrientationDihedrals():
n1,n2,n3,n4 = nodes
sep = seps[1]
t0 = sep*(360.0/10.5)
Lp = self.twistPersistenceLength/0.34 # set semi-arbitrarily as there is a large spread in literature
fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - exp(-sep/Lp)
k = opt.leastsq( fitFun, x0=exp(-sep/Lp) )
k = k[0][0] * 2*kT*0.00030461742
# k *= 0.1
# k *= 0
cmaffeo2
committed
self.addDihedral( n1,n2,n3,n4,Dihedral(k,t0,maxPotential=1) )
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
## Crossover dihedral angles
for nodes,fwds in self._getCrossoverBonds():
n1,n2 = nodes
f1,f2 = fwds
o1,o2 = [n.orientationNode for n in nodes]
a1,a2 = [n.nodeAbove for n in nodes]
b1,b2 = [n.nodeBelow for n in nodes]
k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(1)/147))) * 0.00030461742; # kcal_mol/degree^2
if o1 is not None:
t0 = 90
# if f1: t0 = -90
if a2 is not None:
self.addDihedral( o1,n1,n2,a2,Dihedral(k,t0) )
if o2 is not None:
t0 = 90
# if f2: t0 = -90
if a1 is not None:
self.addDihedral( o2,n2,n1,a1,Dihedral(k,t0) )
if o1 is not None and o2 is not None:
if a1 is not None and a2 is not None:
t0 = 0
self.addDihedral( a1,n1,n2,a2,Dihedral(k,t0) )
elif b1 is not None and b2 is not None:
t0 = 0
self.addDihedral( b1,n1,n2,b2,Dihedral(k,t0) )
elif b1 is not None and a2 is not None:
t0 = 180
self.addDihedral( b1,n1,n2,a2,Dihedral(k,t0) )
elif a1 is not None and b2 is not None:
t0 = 180
self.addDihedral( a1,n1,n2,b2,Dihedral(k,t0) )
def _writeArbdBondFile(self, prefix, directory="potentials"):
filename = prefix + ".bonds.txt"
prefix = "%s/%s-" % (directory,prefix)
for n1,n2,pot in self.bonds:
fh.write("BOND ADD %d %d %s\n" % (n1.idx, n2.idx, pot.filename(prefix)))
def _writeArbdAngleFile(self, prefix, directory="potentials"):
filename = prefix + ".angles.txt"
prefix = "%s/%s-" % (directory,prefix)
for n1,n2,n3,pot in self.angles:
fh.write("ANGLE %d %d %d %s\n" % (n1.idx, n2.idx, n3.idx, pot.filename(prefix)))
def _writeArbdDihedralFile(self, prefix, directory="potentials"):
filename = prefix + ".dihedrals.txt"
prefix = "%s/%s-" % (directory,prefix)
for n1,n2,n3,n4,pot in self.dihedrals:
fh.write("DIHEDRAL %d %d %d %d %s\n" % (n1.idx, n2.idx, n3.idx, n4.idx, pot.filename(prefix)))
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
def _writeArbdExclFile(self, filename):
## Exclude all 1-4 intrahelical nodes
# e = 4
e = 8
exclusions = { (nodes[i],nodes[j])
for nodes,seps in self._getIntrahelicalNodeSeries(e)
for i in range(e-1)
for j in range(i,e) }
## TODO, make exclusions depend on distance
## Exclude ssDNA contacts
for nodes,seps in self._getSsCrossoverBonds():
n1,n2 = nodes # recall that nodes is sorted by .idx
exclusions.add( nodes )
exclusions.update( [(n1,n) for n in (n2.nodeBelow,n2.nodeAbove) if n is not None] )
exclusions.update( [(n,n2) for n in (n1.nodeBelow,n1.nodeAbove) if n is not None] )
## Exclude crossovers and nearby
for nodes,fwds in self._getCrossoverBonds():
n1,n2 = nodes # recall that nodes is sorted by .idx
exclusions.add( nodes )
exclusions.update( [(n1,n) for n in (n2.nodeBelow,n2.nodeAbove) if n is not None] )
exclusions.update( [(n,n2) for n in (n1.nodeBelow,n1.nodeAbove) if n is not None] )
## Write exclusions
with open(filename,'w') as fh:
for n1,n2 in exclusions:
fh.write( "EXCLUDE %d %d\n" % (n1.idx,n2.idx) )
def _getNonbondedPotential(self,x,a,b):
return a*(np.exp(-x/b))