Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# -*- coding: utf-8 -*-
from pathlib import Path
import numpy as np
from scipy.optimize import curve_fit
import sys, os
## Local imports
from arbdmodel import ArbdModel, ParticleType, PointParticle, Group, get_resource_path
from arbdmodel.abstract_polymer import PolymerSection, AbstractPolymerGroup
from arbdmodel.interactions import TabulatedPotential, HarmonicBond, HarmonicAngle, HarmonicDihedral
from arbdmodel.coords import quaternion_to_matrix, readArbdCoords
import MDAnalysis as mda
from gridData import Grid
from writeDx import writeDx
"""Define particle types"""
n_replicas = 10
## units "295 k K/(160 amu * 1.24/ps)" "AA**2/ns"
## units "295 k K/(180 amu * 1.24/ps)" "AA**2/ns"
_P = ParticleType("P",
diffusivity = 1621,
mass = 121,
radius = 5,
nts = 0.5 # made compatible with nbPot
)
_B = ParticleType("B",
diffusivity = 1093,
mass = 181, # thymine
radius = 3,
nts = 0.5 # made compatible with nbPot
)
class DnaStrandFromPolymer(Group):
p = PointParticle(_P, (0,0,0), "P")
b = PointParticle(_B, (3,0,1), "B")
nt = Group( name = "nt", children = [p,b])
nt.add_bond( i=p, j=b, bond = '../../common/two_bead_model/BPB.dat', exclude = True )
def __init__(self, polymer, **kwargs):
self.polymer = polymer
Group.__init__(self, **kwargs)
def _clear_beads(self):
...
def _generate_beads(self):
nts = self.nts = self.children
for i in range(self.polymer.num_monomers):
c = self.polymer.monomer_index_to_contour(i)
r = self.polymer.contour_to_position(c)
o = self.polymer.contour_to_orientation(c)
new = DnaStrandFromPolymer.nt.duplicate()
new.orientation = o
new.position = r
self.add(new)
## Two consecutive nts
for i in range(len(nts)-1):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
self.add_bond( i=b1, j=p2, bond = '../../common/two_bead_model/BBP.dat', exclude=True )
self.add_bond( i=p1, j=p2, bond = '../../common/two_bead_model/BPP.dat', exclude=True )
self.add_angle( i=p1, j=p2, k=b2, angle = '../../common/two_bead_model/p1p2b2.dat' )
self.add_angle( i=b1, j=p2, k=b2, angle = '../../common/two_bead_model/b1p2b2.dat' )
self.add_dihedral( i=b1, j=p1, k=p2, l=b2, dihedral = '../../common/two_bead_model/b1p1p2b2.dat' )
self.add_exclusion( i=b1, j=b2 )
self.add_exclusion( i=p1, j=b2 )
## Three consecutive nts
for i in range(len(nts)-2):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
p3,b3 = nts[i+2].children
self.add_angle( i=p1, j=p2, k=p3, angle = '../../common/two_bead_model/p1p2p3.dat' )
self.add_angle( i=b1, j=p2, k=p3, angle = '../../common/two_bead_model/b1p2p3.dat' )
self.add_dihedral( i=b1, j=p2, k=p3, l=b3, dihedral = '../../common/two_bead_model/b1p2p3b3.dat' )
self.add_exclusion( i=p1, j=p3 )
self.add_exclusion( i=b1, j=p3 )
## Four consecutive nts
for i in range(len(nts)-3):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
p3,b3 = nts[i+2].children
p4,b4 = nts[i+3].children
self.add_dihedral( i=p1, j=p2, k=p3, l=p4, dihedral = '../../common/two_bead_model/p0p1p2p3.dat' )
class IndependentDnaStrandFromPolymer(DnaStrandFromPolymer):
particle_type_dict = {}
def __init__(self, polymer, index, grid_path, **kwargs):
if index not in IndependentDnaStrandFromPolymer.particle_type_dict:
_P = ParticleType("P{:03d}".format(index),
diffusivity = 1621,
mass = 121,
radius = 5,
nts = 0.5, # made compatible with nbPot
grid=[('../{}/grid-P.dx'.format(grid_path), 0.57827709)]
)
_B = ParticleType("B{:03d}".format(index),
diffusivity = 1093,
mass = 181, # thymine
radius = 3,
nts = 0.5, # made compatible with nbPot
grid=[('../{}/grid-B.dx'.format(grid_path), 0.57827709)]
)
IndependentDnaStrandFromPolymer.particle_type_dict[index] = (_P,_B)
_P,_B = self.types = IndependentDnaStrandFromPolymer.particle_type_dict[index]
p = PointParticle(_P, (0,0,0), "P")
b = PointParticle(_B, (3,0,1), "B")
self.nt = nt = Group( name = "nt", children = [p,b])
nt.add_bond( i=p, j=b, bond = '../../common/two_bead_model/BPB.dat', exclude = True )
self.polymer = polymer
Group.__init__(self, **kwargs)
def _clear_beads(self):
...
def _generate_beads(self):
nts = self.nts = self.children
for i in range(self.polymer.num_monomers):
c = self.polymer.monomer_index_to_contour(i)
r = self.polymer.contour_to_position(c)
o = self.polymer.contour_to_orientation(c)
new = self.nt.duplicate()
new.orientation = o
new.position = r
self.add(new)
## Two consecutive nts
for i in range(len(nts)-1):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
self.add_bond( i=b1, j=p2, bond = '../../common/two_bead_model/BBP.dat', exclude=True )
self.add_bond( i=p1, j=p2, bond = '../../common/two_bead_model/BPP.dat', exclude=True )
self.add_angle( i=p1, j=p2, k=b2, angle = '../../common/two_bead_model/p1p2b2.dat' )
self.add_angle( i=b1, j=p2, k=b2, angle = '../../common/two_bead_model/b1p2b2.dat' )
self.add_dihedral( i=b1, j=p1, k=p2, l=b2, dihedral = '../../common/two_bead_model/b1p1p2b2.dat' )
self.add_exclusion( i=b1, j=b2 )
self.add_exclusion( i=p1, j=b2 )
## Three consecutive nts
for i in range(len(nts)-2):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
p3,b3 = nts[i+2].children
self.add_angle( i=p1, j=p2, k=p3, angle = '../../common/two_bead_model/p1p2p3.dat' )
self.add_angle( i=b1, j=p2, k=p3, angle = '../../common/two_bead_model/b1p2p3.dat' )
self.add_dihedral( i=b1, j=p2, k=p3, l=b3, dihedral = '../../common/two_bead_model/b1p2p3b3.dat' )
self.add_exclusion( i=p1, j=p3 )
self.add_exclusion( i=b1, j=p3 )
## Four consecutive nts
for i in range(len(nts)-3):
p1,b1 = nts[i].children
p2,b2 = nts[i+1].children
p3,b3 = nts[i+2].children
p4,b4 = nts[i+3].children
self.add_dihedral( i=p1, j=p2, k=p3, l=p4, dihedral = '../../common/two_bead_model/p0p1p2p3.dat' )
class DnaModel(ArbdModel):
def __init__(self, polymers, grid_path, num_polymers_per_replica,
DEBUG=False,
**kwargs):
kwargs['particle_integrator'] = 'Langevin'
kwargs['extra_bd_file_lines'] = 'ParticleLangevinIntegrator BAOAB'
kwargs['timestep'] = 20e-6
kwargs['temperature'] = 291
kwargs['cutoff'] = 35
kwargs['pairlist_distance'] = 60
kwargs['decomp_period'] = 1000
self.polymer_group = AbstractPolymerGroup(polymers)
self.strands = [IndependentDnaStrandFromPolymer(p,i//num_polymers_per_replica, grid_path)
for i,p in enumerate(self.polymer_group.polymers)]
ArbdModel.__init__(self, self.strands, **kwargs)
self.nbSchemes = []
processed = set()
for strand in self.strands:
if strand.types not in processed:
_P,_B = strand.types
self.useNonbondedScheme( TabulatedPotential('../../common/two_bead_model/NBBB.dat'), typeA=_B, typeB=_B )
self.useNonbondedScheme( TabulatedPotential('../../common/two_bead_model/NBPB.dat'), typeA=_P, typeB=_B )
self.useNonbondedScheme( TabulatedPotential( '../../common/two_bead_model/NBPP.dat'), typeA=_P, typeB=_P )
processed.add( strand.types )
self.generate_beads()
def generate_beads(self):
for s in self.strands:
s._generate_beads()
def run_round(index, last_coordinates = None, generate_grid=False):
strands_per_replica = 31
dimensions = [106.620003]*3
name = 'many-strands'
if generate_grid:
path = 'iter-{}'.format(index-1)
try:
last_coordinates = readArbdCoords('{}/output/{}.restart'.format(path,name))
except:
pass
generate_new_grid( index-1, name )
IndependentDnaStrandFromPolymer.particle_type_dict = {} # Ugly hack to clear cached particle types that have wrong grids
strands = []
for i in range(strands_per_replica*n_replicas):
r0 = np.array( [(a-0.5)*b for a,b in
zip( np.random.uniform(size=3), dimensions )] )
r1 = r0 + (np.random.uniform(size=3)-0.5)*5*5
s = PolymerSection("D{}".format(i), num_monomers=5, monomer_length=5,
start_position=r0, end_position=r1)
strands.append(s)
## Randomly place strands through system
model = DnaModel( strands, grid_path='grids-{}'.format(index), num_polymers_per_replica=strands_per_replica, dimensions=dimensions )
if last_coordinates is not None:
for p,c in zip([p for p in model],last_coordinates):
p.position = c
path = 'iter-{}'.format(index)
model.simulate( output_name = name, output_period=1e3, num_steps=1e6, directory=path, gpu=1 ) # 20 ns
coords = readArbdCoords('{}/output/{}.restart'.format(path,name))
generate_new_grid( index, name )
return coords
def symmetrize_grid(asym):
sym = np.array(asym)
sym = sym + asym[::-1,:,::-1]
sym = sym + asym[::-1,::-1,:]
sym = sym + asym[:,::-1,::-1]
sym = 0.25 * sym
return sym
target_density_grids = {c:Grid('target_density/grid-{}.dx'.format(c)) for c in ('P','B')}
_last_grids = {c:None for c in ('P','B')}
for k,g in target_density_grids.items():
g.grid = symmetrize_grid(g.grid)
def get_mask():
if Path('mask.dx').exists():
return Grid('mask.dx').grid
from scipy.ndimage import gaussian_filter
mask_grid = Grid('ssb-density.dx')
mask = mask_grid.grid
mask = gaussian_filter( mask, sigma=1.5/mask_grid.delta, mode='constant' )
mask = symmetrize_grid(mask)
mask = (mask - 0.001) / (0.025-0.001)
mask[mask>1] = 1
mask[mask<0] = 0
mask = symmetrize_grid(mask)
writeDx('mask.dx', mask,
origin=mask_grid.origin, delta=mask_grid.delta, fmt='%.6f')
return mask
mask = get_mask()
def get_avg_edge_value(u):
return (u[0,:,:].mean() + u[-1,:,:].mean() +
u[:,0,:].mean() + u[:,-1,:].mean() +
u[:,:,0].mean() + u[:,:,-1].mean())/6
def generate_initial_grid( d ):
for bead_type in ('P','B'):
target = target_density_grids[bead_type]
u = np.array(target.grid)
u = symmetrize_grid(u)
u = -1.0*np.log( (u + 1e-15) ) * mask
u = u - get_avg_edge_value(u)
writeDx('{}/grid-{}.dx'.format(d,bead_type), u,
origin=target.origin, delta=target.delta, fmt='%.6f')
_last_grids[bead_type] = Grid(u, origin=target.origin, delta=target.delta)
def generate_new_grid( index, name ):
d = 'grids-{}'.format(index+1)
d_old = 'grids-{}'.format(index)
try:
os.makedirs(d)
except:
pass
if index == 0:
return generate_initial_grid(d)
import subprocess
from scipy.ndimage import gaussian_filter
path = 'iter-{}'.format(index)
vmdin = """
set ID [mol new {path}/{name}.psf]
mol addfile {path}/output/{name}.dcd beg 200 waitfor all
foreach type "P B" {{
set sel [atomselect $ID "name $type"]
$sel set radius 3
volmap density $sel -o {path}/{name}.$type-density.dx -res 0.5 -combine avg -minmax "{{-38 -36 -50}} {{38 36 50}}" -allframes -checkpoint 0
}}
""".format( path=path, name=name )
subprocess.run(['vmd','-dispdev','text'], input=vmdin, encoding='ascii', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
for bead_type in ('P','B'):
density = Grid('{}/{}.{}-density.dx'.format(path,name,bead_type)).grid
density = density / n_replicas
density = symmetrize_grid(density)
target = target_density_grids[bead_type]
dU = -1.0*np.log( (target.grid+0.5*1e-6)/(density+0.5*1e-6) ) * mask
dU = dU - get_avg_edge_value(dU)
""" ibi-combine """
if _last_grids[bead_type] is None:
_last_grids[bead_type] = Grid('{}/grid-{}.dx'.format(d_old,bead_type))
ulast = _last_grids[bead_type].grid
out = ulast+dU
sl = (target.grid < 1e-6) | (out > 20)
out[sl] = 20
writeDx('{}/grid-{}.dx'.format(d,bead_type), out,
origin=target.origin, delta=target.delta, fmt='%.6f')
_last_grids[bead_type] = Grid(out, origin=target.origin, delta=target.delta)
if __name__ == "__main__":
# """ #START
c = None
start=1
for i in range(start,start+200):
c = run_round( i, c, generate_grid = (i==start) )
print("Round {}, c.shape {}".format(i,c.shape))
""" #END """