Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
db-guided-mrmp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rmoan2
db-guided-mrmp
Commits
b35e8bf3
Commit
b35e8bf3
authored
4 months ago
by
rachelmoan
Browse files
Options
Downloads
Patches
Plain Diff
improve how we construct bezier curve for initial guess.
parent
0b22b300
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
guided_mrmp/conflict_resolvers/curve_path.py
+166
-154
166 additions, 154 deletions
guided_mrmp/conflict_resolvers/curve_path.py
with
166 additions
and
154 deletions
guided_mrmp/conflict_resolvers/curve_path.py
+
166
−
154
View file @
b35e8bf3
import
numpy
as
np
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
from
guided_mrmp.utils
import
Library
import
math
import
sys
from
scipy.ndimage
import
gaussian_filter1d
# from guided_mrmp.conflict_resolvers import TrajOptMultiRobot
def
bezier
(
t
,
points
):
#
"""
Calculate Bezier curve point for parameter t and given control points.
"""
# Function to calculate the Bézier curve points
n
=
len
(
points
)
-
1
def
bezier_curve
(
t
,
control_points
):
return
sum
(
P0
,
P1
,
P2
=
control_points
(
math
.
comb
(
n
,
i
)
*
(
1
-
t
)
**
(
n
-
i
)
*
t
**
i
*
points
[
i
]
for
i
in
range
(
n
+
1
)),
return
(
1
-
t
)
**
2
*
P0
+
2
*
(
1
-
t
)
*
t
*
P1
+
t
**
2
*
P2
np
.
zeros
(
2
)
)
def
smooth_path
(
points
,
control_point_distance
,
N
=
40
):
# List to store the points along the smoothed curve
def
smooth_path
(
points
,
N
=
100
,
alpha
=
0.25
,
sigma
=
1.0
):
smoothed_curve
=
[]
smooth_points
=
[]
control_points
=
[]
# Connect the first point to the first control point
i
=
0
# control_point_start = points[0] + (points[1] - points[0]) * control_point_distance
while
i
<
len
(
points
)
-
1
:
smoothed_curve
.
append
(
points
[
0
])
if
i
<
len
(
points
)
-
3
and
is_bend
(
points
[
i
:
i
+
4
]):
# smoothed_curve.append(control_point_start)
# Double bend (cubic bezier with two softened control points)
p0
,
p1
,
p2
,
p3
=
np
.
array
(
points
[
i
]),
np
.
array
(
points
[
i
+
1
]),
np
.
array
(
points
[
i
+
2
]),
np
.
array
(
points
[
i
+
3
])
# Iterate through each set of three consecutive points
cp1
=
soften_control_point
(
p1
,
alpha
,
p0
,
p2
)
# Soften the first control point
for
i
in
range
(
len
(
points
)
-
2
):
cp2
=
soften_control_point
(
p2
,
alpha
,
p1
,
p3
)
# Soften the second control point
# Extract the three consecutive points
control_points
.
extend
([
cp1
,
cp2
])
# Collect control points for visualization
P0
=
points
[
i
]
for
t
in
np
.
linspace
(
0
,
1
,
20
):
P1
=
points
[
i
+
1
]
smooth_points
.
append
(
bezier
(
t
,
[
p0
,
cp1
,
cp2
,
p3
]))
P2
=
points
[
i
+
2
]
i
+=
3
elif
i
<
len
(
points
)
-
2
and
is_bend
(
points
[
i
:
i
+
3
]):
# Calculate the tangent directions at the start and end points
# Single bend (quadratic bezier with one softened control point)
if
np
.
linalg
.
norm
(
P1
-
P0
)
==
0
:
p0
,
p1
,
p2
=
np
.
array
(
points
[
i
]),
np
.
array
(
points
[
i
+
1
]),
np
.
array
(
points
[
i
+
2
])
tangent_start
=
np
.
array
([
0
,
0
])
cp
=
soften_control_point
(
p1
,
alpha
,
p0
,
p2
)
# Use refined softening
else
:
tangent_start
=
(
P1
-
P0
)
/
np
.
linalg
.
norm
(
P1
-
P0
)
control_points
.
append
(
cp
)
# Collect control point for visualization
if
np
.
linalg
.
norm
(
P2
-
P1
)
==
0
:
for
t
in
np
.
linspace
(
0
,
1
,
20
):
tangent_end
=
np
.
array
([
0
,
0
])
smooth_points
.
append
(
bezier
(
t
,
[
p0
,
cp
,
p2
]))
else
:
tangent_end
=
(
P2
-
P1
)
/
np
.
linalg
.
norm
(
P2
-
P1
)
i
+=
2
else
:
# Calculate the control points
# No bend, interpolate straight line
control_point_start
=
P1
-
tangent_start
*
control_point_distance
smooth_points
.
append
(
points
[
i
])
control_point_end
=
P1
+
tangent_end
*
control_point_distance
i
+=
1
# Construct the Bézier curve for the current set of points
# Ensure start and end points are included
control_points
=
[
control_point_start
,
P1
,
control_point_end
]
smooth_points
=
[
points
[
0
]]
+
smooth_points
+
[
points
[
-
1
]]
t_values
=
np
.
linspace
(
0
,
1
,
10
)
# print(t_values)
# Apply Gaussian smoothing to soften remaining sharp transitions
curve_points
=
np
.
array
([
bezier_curve
(
t
,
control_points
)
for
t
in
t_values
])
smooth_points
=
np
.
array
(
smooth_points
)
smooth_points
[:,
0
]
=
gaussian_filter1d
(
smooth_points
[:,
0
],
sigma
=
sigma
)
smooth_points
[:,
1
]
=
gaussian_filter1d
(
smooth_points
[:,
1
],
sigma
=
sigma
)
# Downsample to N points, preserving start and end points
indices
=
np
.
linspace
(
0
,
len
(
smooth_points
)
-
1
,
N
).
astype
(
int
)
downsampled_points
=
smooth_points
[
indices
]
downsampled_points
[
0
],
downsampled_points
[
-
1
]
=
points
[
0
],
points
[
-
1
]
return
downsampled_points
,
np
.
array
(
control_points
)
def
soften_control_point
(
middle_point
,
alpha
,
prev_point
,
next_point
):
"""
Move middle point along the bisector away from the 90-degree angle.
"""
middle_point
=
np
.
array
(
middle_point
,
dtype
=
np
.
float64
)
prev_point
=
np
.
array
(
prev_point
,
dtype
=
np
.
float64
)
next_point
=
np
.
array
(
next_point
,
dtype
=
np
.
float64
)
# Vectors from middle point to adjacent points
vec1
=
prev_point
-
middle_point
vec2
=
next_point
-
middle_point
# Normalize the vectors
vec1
/=
np
.
linalg
.
norm
(
vec1
)
vec2
/=
np
.
linalg
.
norm
(
vec2
)
# Calculate the bisector direction
bisector
=
vec1
+
vec2
bisector
/=
np
.
linalg
.
norm
(
bisector
)
# Normalize bisector
# Move middle point along the bisector direction
adjusted_point
=
middle_point
+
alpha
*
bisector
return
adjusted_point
def
is_bend
(
segment
):
"""
Check if three or four points form a 90-degree bend.
"""
if
len
(
segment
)
==
3
:
return
np
.
cross
(
segment
[
1
]
-
segment
[
0
],
segment
[
2
]
-
segment
[
1
])
!=
0
elif
len
(
segment
)
==
4
:
return
(
np
.
cross
(
segment
[
1
]
-
segment
[
0
],
segment
[
2
]
-
segment
[
1
])
!=
0
and
np
.
cross
(
segment
[
2
]
-
segment
[
1
],
segment
[
3
]
-
segment
[
2
])
!=
0
)
return
False
def
calculate_headings
(
path_points
):
"""
Calculate headings for each segment in the path, allowing for reverse movement.
Parameters:
path_points (np.ndarray): Array of (x, y) points representing the smoothed path.
Returns:
headings (list): List of headings (in radians) for each segment in the path.
"""
headings
=
[]
prev_heading
=
None
for
i
in
range
(
len
(
path_points
)
-
1
):
# Calculate forward and reverse headings for each segment
p1
,
p2
=
path_points
[
i
],
path_points
[
i
+
1
]
forward_heading
=
np
.
arctan2
(
p2
[
1
]
-
p1
[
1
],
p2
[
0
]
-
p1
[
0
])
# Append the points along the curve to the smoothed curve list
smoothed_curve
.
extend
(
curve_points
[
1
:])
smoothed_curve
=
np
.
array
(
smoothed_curve
)
reverse_heading
=
(
forward_heading
+
np
.
pi
)
%
(
2
*
np
.
pi
)
t_original
=
np
.
linspace
(
0
,
1
,
len
(
smoothed_curve
))
t_resampled
=
np
.
linspace
(
0
,
1
,
N
)
# Choose direction based on previous heading to minimize angle change
smoothed_curve
=
np
.
array
([
np
.
interp
(
t_resampled
,
t_original
,
smoothed_curve
[:,
i
])
for
i
in
range
(
smoothed_curve
.
shape
[
1
])]).
T
if
prev_heading
is
not
None
:
smoothed_curve
=
smoothed_curve
.
tolist
()
forward_diff
=
np
.
abs
((
forward_heading
-
prev_heading
+
np
.
pi
)
%
(
2
*
np
.
pi
)
-
np
.
pi
)
reverse_diff
=
np
.
abs
((
reverse_heading
-
prev_heading
+
np
.
pi
)
%
(
2
*
np
.
pi
)
-
np
.
pi
)
# Connect the last control point to the last po
in
t
chosen_heading
=
forward_heading
if
forward_diff
<=
reverse_diff
else
reverse_head
in
g
# control_point_end = points[-1] - (points[-1] - points[-2]) * control_point_distance
else
:
# smoothed_curve.append(control_point_end)
# If it's the first segment, choose forward heading by default
smoothed_curve
.
append
(
points
[
-
1
])
chosen_heading
=
forward_heading
# Convert smoothed curve points to a numpy array
return
np
.
array
(
smoothed_curve
)
# plot the two points and the heading
# import matplotlib.pyplot as plt
# plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'ro-') # Plot the two points
# dx = 0.1 * np.cos(forward_heading)
# dy = 0.1 * np.sin(forward_heading)
# plt.arrow(p1[0], p1[1], dx, dy, head_width=0.01, head_length=0.1, fc='blue', ec='blue')
# dx = 0.1 * np.cos(reverse_heading)
# dy = 0.1 * np.sin(reverse_heading)
# plt.arrow(p1[0], p1[1], dx, dy, head_width=0.01, head_length=0.1, fc='green', ec='green')
# plt.show()
headings
.
append
(
chosen_heading
)
prev_heading
=
chosen_heading
return
headings
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
# Example points and visualization
points
=
np
.
array
([
[
0
,
0
],
[
0
,
1
],
[
1
,
1
],
[
2
,
1
],
[
2
,
2
],
[
2
,
3
],
[
2
,
2
],
[
2
,
1
],
[
2
,
0
]
])
# points = np.array([
# [0, 0], [0, 1], [1, 1], [1,0], [0,0]
# ])
# define obstacles
# Generate smooth curve and get control points
circle_obs
=
np
.
array
([])
N
=
20
smooth_points
,
control_points
=
smooth_path
(
points
,
N
,
alpha
=-
.
5
,
sigma
=
0.8
)
rectangle_obs
=
np
.
array
([]
)
print
(
f
"
smooth_points =
{
smooth_points
}
"
)
# points1 = np.array([[1,6],
# Example usage with a smooth path
# [1,1],
# path_points, control_points = smooth_path(points, N=100, alpha=0.2, sigma=1.5)
# [9,1]])
headings
=
calculate_headings
(
smooth_points
)
# points2 = np.array([[9,1],
# [9,6],
# [1,6]])
# smoothed_curve1 = smooth_path(points1, 3)
# Displaying the headings
# smoothed_curve2 = smooth_path(points2, 3)
for
i
,
heading
in
enumerate
(
headings
):
print
(
f
"
Segment
{
i
}
: Heading =
{
np
.
degrees
(
heading
)
:
.
2
f
}
degrees
"
)
# # Plot the original points and the smoothed curve
# Plotting
# plt.plot(points1[:, 0], points1[:, 1], 'bo-', label='original path')
plt
.
figure
(
figsize
=
(
8
,
8
))
# plt.plot(smoothed_curve1[:, 0], smoothed_curve1[:, 1], 'r-', label='curved path')
plt
.
plot
(
smooth_points
[:,
0
],
smooth_points
[:,
1
],
'
b-
'
,
label
=
"
Bezier Smooth Path
"
)
# plt.xlabel('X')
# plt.ylabel('Y')
# # plt.title('Smoothed Curve using Bézier Curves')
# plt.legend()
# plt.grid(True)
# plt.axis('equal')
# plt.show()
# Example points
plt
.
scatter
(
points
[:,
0
],
points
[:,
1
],
color
=
"
purple
"
,
marker
=
"
x
"
,
s
=
100
,
label
=
"
Control Points
"
)
lib
=
Library
(
"
guided_mrmp/database/2x3_library
"
)
lib
.
read_library_from_file
()
robot_starts
=
[[
0
,
0
],
[
0
,
2
],
[
1
,
2
]]
# Add circles and headings
robot_goals
=
[[
0
,
1
],[
1
,
2
],
[
0
,
2
]]
for
i
,
(
x
,
y
)
in
enumerate
(
smooth_points
):
sol
=
lib
.
get_matching_solution
(
robot_starts
,
robot_goals
)
plt
.
plot
(
x
,
y
,
'
ro
'
)
# Circle at each point
if
i
<
len
(
headings
):
heading
=
headings
[
i
]
dx
=
0.1
*
np
.
cos
(
heading
)
dy
=
0.1
*
np
.
sin
(
heading
)
plt
.
arrow
(
x
,
y
,
dx
,
dy
,
head_width
=
0.05
,
head_length
=
0.1
,
fc
=
'
green
'
,
ec
=
'
green
'
)
print
(
sol
)
plt
.
xlabel
(
"
X
"
)
plt
.
ylabel
(
"
Y
"
)
plt
.
title
(
"
Smoothed Path with Control Points and Headings
"
)
plt
.
legend
()
plt
.
grid
(
True
)
plt
.
show
()
for
points
in
sol
:
# Condition to filter out rows equal to [-1, -1]
points
=
np
.
array
(
points
)
condition
=
(
points
!=
[
-
1
,
-
1
]).
any
(
axis
=
1
)
points
=
points
[
condition
]
print
(
f
"
points =
{
points
}
"
)
# Parameters
control_point_distance
=
0.3
# Distance of control points from the middle point
smoothed_curve
=
smooth_path
(
points
,
control_point_distance
)
print
(
f
"
smoothed_curve =
{
smoothed_curve
}
"
)
# Plot the original points and the smoothed curve
plt
.
plot
(
points
[:,
0
],
points
[:,
1
],
'
bo-
'
,
label
=
'
original path
'
)
plt
.
plot
(
smoothed_curve
[:,
0
],
smoothed_curve
[:,
1
],
'
r-
'
,
label
=
'
curved path
'
)
plt
.
xlabel
(
'
X
'
)
plt
.
ylabel
(
'
Y
'
)
# plt.title('Smoothed Curve using Bézier Curves')
plt
.
legend
()
plt
.
grid
(
True
)
plt
.
axis
(
'
equal
'
)
plt
.
show
()
# weights for the cost function
dist_robots_weight
=
10
dist_obstacles_weight
=
10
control_costs_weight
=
1.0
time_weight
=
5.0
# other params
num_robots
=
3
rob_radius
=
0.25
N
=
20
# # initial guess
# print(f"N = {N}")
# initial_guess = np.zeros((num_robots*3,N+1))
# print(initial_guess)
# # for i,(start,goal) in enumerate(zip(robot_starts, robot_goals)):
# for i in range(0,num_robots*2,3):
# start=robot_starts[int(i/2)]
# goal=robot_goals[int(i/2)]
# initial_guess[i,:] = np.linspace(start[0], goal[0], N+1)
# initial_guess[i+1,:] = np.linspace(start[1], goal[1], N+1)
# # initial_guess[i+2,:] = np.linspace(.5, .5, N+1)
# # initial_guess[i+3,:] = np.linspace(.5, .5, N+1)
# print(initial_guess)
# solver = TrajOptMultiRobot(num_robots=num_robots,
# robot_radius=rob_radius,
# starts=robot_starts,
# goals=robot_goals,
# circle_obstacles=circle_obs,
# rectangle_obstacles=rectangle_obs,
# rob_dist_weight=dist_robots_weight,
# obs_dist_weight=dist_obstacles_weight,
# control_weight=control_costs_weight,
# time_weight=time_weight
# )
# sol,pos = solver.solve(N, initial_guess)
# pos_vals = np.array(sol.value(pos))
# solver.plot_paths(pos_vals, initial_guess)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment