Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
db-guided-mrmp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rmoan2
db-guided-mrmp
Commits
0b22b300
Commit
0b22b300
authored
4 months ago
by
rachelmoan
Browse files
Options
Downloads
Patches
Plain Diff
delete the old traj opt class in test file, use the one in the main part of code
parent
57a1c38e
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
guided_mrmp/tests/initial_guesses.yaml
+1
-1
1 addition, 1 deletion
guided_mrmp/tests/initial_guesses.yaml
guided_mrmp/tests/test_traj_opt.py
+1
-218
1 addition, 218 deletions
guided_mrmp/tests/test_traj_opt.py
with
2 additions
and
219 deletions
guided_mrmp/tests/initial_guesses.yaml
+
1
−
1
View file @
0b22b300
...
...
@@ -22,7 +22,7 @@ cost_weights:
N
:
30
num_trials
:
1
0
num_trials
:
1
control_point_distance
:
-.5
...
...
This diff is collapsed.
Click to expand it.
guided_mrmp/tests/test_traj_opt.py
+
1
−
218
View file @
0b22b300
...
...
@@ -6,223 +6,6 @@ from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_hea
from
guided_mrmp.conflict_resolvers.traj_opt_resolver
import
TrajOptResolver
class
TrajOptMultiRobot
():
def
__init__
(
self
,
num_robots
,
robot_radius
,
starts
,
goals
,
circle_obstacles
,
rectangle_obstacles
,
rob_dist_weight
,
obs_dist_weight
,
control_weight
,
time_weight
):
self
.
num_robots
=
num_robots
self
.
starts
=
starts
self
.
goals
=
goals
self
.
circle_obs
=
circle_obstacles
self
.
rect_obs
=
rectangle_obstacles
self
.
rob_dist_weight
=
rob_dist_weight
self
.
obs_dist_weight
=
obs_dist_weight
self
.
control_weight
=
control_weight
self
.
time_weight
=
time_weight
self
.
robot_radius
=
MX
(
robot_radius
)
def
dist
(
self
,
robot_position
,
circle
):
"""
Returns the distance between a robot and a circle
params:
robot_position [x,y]
circle [x,y,radius]
"""
return
sumsqr
(
robot_position
-
transpose
(
circle
[:
2
]))
def
apply_quadratic_barrier
(
self
,
d_max
,
d
,
c
):
"""
Applies a quadratic barrier to some given distance. The quadratic barrier
is a soft barrier function. We are using it for now to avoid any issues with
invalid initial solutions, which hard barrier functions cannot handle.
params:
d (float): distance to the obstacle
c (float): controls the steepness of curve.
higher c --> gets more expensive faster as you move toward obs
d_max (float): The threshold distance at which the barrier starts to apply
"""
return
c
*
fmax
(
0
,
d_max
-
d
)
**
2
def
log_normal_barrier
(
self
,
sigma
,
d
,
c
):
return
c
*
fmax
(
0
,
2
-
(
d
/
sigma
))
**
2.5
def
problem_setup
(
self
,
N
,
x_range
,
y_range
):
"""
Problem setup for the multi-robot collision resolution traj opt problem
inputs:
- N (int): number of control intervals
- x_range (tuple): range of x values
- y_range (tuple): range of y values
outputs:
- problem (dict): dictionary containing the optimization problem
and the decision variables
"""
opti
=
Opti
()
# Optimization problem
# ---- decision variables --------- #
X
=
opti
.
variable
(
self
.
num_robots
*
3
,
N
+
1
)
# state trajectory (x,y,heading)
pos
=
X
[:
self
.
num_robots
*
2
,:]
# position is the first two values
x
=
pos
[
0
::
2
,:]
y
=
pos
[
1
::
2
,:]
heading
=
X
[
self
.
num_robots
*
2
:,:]
# heading is the last value
U
=
opti
.
variable
(
self
.
num_robots
*
2
,
N
)
# control trajectory (v, omega)
vel
=
U
[
0
::
2
,:]
omega
=
U
[
1
::
2
,:]
T
=
opti
.
variable
()
# final time
# ---- obstacle setup ------------ #
circle_obs
=
DM
(
self
.
circle_obs
)
# make the obstacles casadi objects
# ------ Obstacle dist cost ------ #
# TODO:: Include rectangular obstacles
dist_to_other_obstacles
=
0
for
r
in
range
(
self
.
num_robots
):
for
k
in
range
(
N
):
for
c
in
range
(
circle_obs
.
shape
[
0
]):
circle
=
circle_obs
[
c
,
:]
# d = self.dist(pos[2*r : 2*(r+1), k], circle) - self.robot_radius - circle[2]
d
=
sumsqr
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
k
]
-
transpose
(
circle
[:
2
]))
-
2
*
self
.
robot_radius
-
circle
[
2
]
dist_to_other_obstacles
+=
self
.
apply_quadratic_barrier
(
3
*
(
self
.
robot_radius
+
circle
[
2
]),
d
,
10
)
# ------ Robot dist cost ------ #
dist_to_other_robots
=
0
for
k
in
range
(
N
):
for
r1
in
range
(
self
.
num_robots
):
for
r2
in
range
(
self
.
num_robots
):
if
r1
!=
r2
:
d
=
sumsqr
(
pos
[
2
*
r1
:
2
*
(
r1
+
1
),
k
]
-
pos
[
2
*
r2
:
2
*
(
r2
+
1
),
k
])
-
2
*
self
.
robot_radius
dist_to_other_robots
+=
self
.
apply_quadratic_barrier
(
4
*
self
.
robot_radius
,
d
,
12
)
# ---- dynamics constraints ---- #
dt
=
T
/
N
# length of a control interval
pi
=
[
3.14159
]
*
self
.
num_robots
pi
=
np
.
array
(
pi
)
pi
=
DM
(
pi
)
for
k
in
range
(
N
):
# loop over control intervals
dxdt
=
vel
[:,
k
]
*
cos
(
heading
[:,
k
])
dydt
=
vel
[:,
k
]
*
sin
(
heading
[:,
k
])
dthetadt
=
omega
[:,
k
]
opti
.
subject_to
(
x
[:,
k
+
1
]
==
x
[:,
k
]
+
dt
*
dxdt
)
opti
.
subject_to
(
y
[:,
k
+
1
]
==
y
[:,
k
]
+
dt
*
dydt
)
opti
.
subject_to
(
heading
[:,
k
+
1
]
==
fmod
(
heading
[:,
k
]
+
dt
*
dthetadt
,
2
*
pi
))
# ------ Control panalty ------ #
# Calculate the sum of squared differences between consecutive heading angles
heading_diff_penalty
=
0
for
k
in
range
(
N
-
1
):
heading_diff_penalty
+=
sumsqr
(
fmod
(
heading
[:,
k
+
1
]
-
heading
[:,
k
]
+
pi
,
2
*
pi
)
-
pi
)
# ------ Distance to goal penalty ------ #
dist_to_goal
=
0
for
r
in
range
(
self
.
num_robots
):
# calculate the distance to the goal in the final control interval
dist_to_goal
+=
sumsqr
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
-
1
]
-
self
.
goals
[
r
])
# ------ cost function ------ #
opti
.
minimize
(
self
.
rob_dist_weight
*
dist_to_other_robots
+
self
.
obs_dist_weight
*
dist_to_other_obstacles
+
self
.
time_weight
*
T
+
self
.
control_weight
*
heading_diff_penalty
+
20
*
dist_to_goal
+
1
*
sumsqr
(
U
))
# ------ control constraints ------ #
for
k
in
range
(
N
):
for
r
in
range
(
self
.
num_robots
):
opti
.
subject_to
(
sumsqr
(
vel
[
r
,
k
])
<=
0.2
**
2
)
opti
.
subject_to
(
sumsqr
(
omega
[
r
,
k
])
<=
0.2
**
2
)
# ------ bound x, y, and time ------ #
opti
.
subject_to
(
opti
.
bounded
(
x_range
[
0
]
+
self
.
robot_radius
,
x
,
x_range
[
1
]
-
self
.
robot_radius
))
opti
.
subject_to
(
opti
.
bounded
(
y_range
[
0
]
+
self
.
robot_radius
,
y
,
y_range
[
1
]
-
self
.
robot_radius
))
opti
.
subject_to
(
opti
.
bounded
(
0
,
T
,
100
))
# ------ initial conditions ------ #
for
r
in
range
(
self
.
num_robots
):
opti
.
subject_to
(
heading
[
r
,
0
]
==
self
.
starts
[
r
][
2
])
opti
.
subject_to
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
0
]
==
self
.
starts
[
r
][
0
:
2
])
opti
.
subject_to
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
-
1
]
-
self
.
goals
[
r
]
<=
1
**
2
)
return
{
'
opti
'
:
opti
,
'
X
'
:
X
,
'
U
'
:
U
,
'
T
'
:
T
}
def
solve_optimization_problem
(
self
,
problem
,
initial_guesses
=
None
,
solver_options
=
None
):
opti
=
problem
[
'
opti
'
]
if
initial_guesses
:
for
param
,
value
in
initial_guesses
.
items
():
# print(f"param = {param}")
# print(f"value = {value}")
opti
.
set_initial
(
problem
[
param
],
value
)
# Set numerical backend, with options if provided
if
solver_options
:
opti
.
solver
(
'
ipopt
'
,
solver_options
)
else
:
opti
.
solver
(
'
ipopt
'
)
try
:
sol
=
opti
.
solve
()
# actual solve
status
=
'
succeeded
'
except
:
sol
=
None
status
=
'
failed
'
results
=
{
'
status
'
:
status
,
'
solution
'
:
sol
,
}
if
sol
:
for
var_name
,
var
in
problem
.
items
():
if
var_name
!=
'
opti
'
:
results
[
var_name
]
=
sol
.
value
(
var
)
return
results
def
solve
(
self
,
N
,
x_range
,
y_range
,
initial_guesses
):
"""
Setup and solve a multi-robot traj opt problem
input:
- N (int): the number of control intervals
- x_range (tuple):
- y_range (tuple):
"""
problem
=
self
.
problem_setup
(
N
,
x_range
,
y_range
)
solver_options
=
{
'
ipopt.print_level
'
:
0
,
'
print_time
'
:
0
,
# 'ipopt.tol': 5,
# 'ipopt.acceptable_tol': 5,
# 'ipopt.acceptable_iter': 10
}
results
=
self
.
solve_optimization_problem
(
problem
,
initial_guesses
,
solver_options
)
if
results
[
'
status
'
]
==
'
failed
'
:
return
None
,
None
,
None
,
None
,
None
X
=
results
[
'
X
'
]
sol
=
results
[
'
solution
'
]
# Extract the values that we want from the optimizer's solution
pos
=
X
[:
self
.
num_robots
*
2
,:]
x_vals
=
pos
[
0
::
2
,:]
y_vals
=
pos
[
1
::
2
,:]
theta_vals
=
X
[
self
.
num_robots
*
2
:,:]
return
sol
,
pos
,
x_vals
,
y_vals
,
theta_vals
def
plot_paths
(
circle_obs
,
num_robots
,
starts
,
goals
,
x_opt
,
initial_guess
,
x_range
,
y_range
):
fig
,
ax
=
plt
.
subplots
()
...
...
@@ -449,7 +232,7 @@ if __name__ == "__main__":
# load the yaml file
import
yaml
with
open
(
"
tests/initial_guesses.yaml
"
)
as
file
:
with
open
(
"
guided_mrmp/
tests/initial_guesses.yaml
"
)
as
file
:
settings
=
yaml
.
load
(
file
,
Loader
=
yaml
.
FullLoader
)
seed
=
1123581
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment