Skip to content
Snippets Groups Projects
test_traj_opt.py 21.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.patches import Circle, Rectangle
    from casadi import *
    from guided_mrmp.conflict_resolvers.curve_path import smooth_path, calculate_headings
    
    from guided_mrmp.conflict_resolvers.traj_opt_resolver import TrajOptResolver
    
    class TrajOptMultiRobot():
        def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles,
                     rob_dist_weight, obs_dist_weight, control_weight, time_weight):
            self.num_robots = num_robots
            self.starts = starts
            self.goals = goals
            self.circle_obs = circle_obstacles
            self.rect_obs = rectangle_obstacles
            self.rob_dist_weight = rob_dist_weight
            self.obs_dist_weight = obs_dist_weight
            self.control_weight =control_weight
            self.time_weight = time_weight
            self.robot_radius = MX(robot_radius)
    
        def dist(self, robot_position, circle):
            """
            Returns the distance between a robot and a circle
    
            params:
                robot_position [x,y]
                circle [x,y,radius]
            """
            return sumsqr(robot_position - transpose(circle[:2])) 
    
        def apply_quadratic_barrier(self, d_max, d, c):
            """
            Applies a quadratic barrier to some given distance. The quadratic barrier 
            is a soft barrier function. We are using it for now to avoid any issues with
            invalid initial solutions, which hard barrier functions cannot handle. 
    
            params:
                d (float):      distance to the obstacle
                c (float):      controls the steepness of curve. 
                                higher c --> gets more expensive faster as you move toward obs
                d_max (float):  The threshold distance at which the barrier starts to apply 
            """
            return c*fmax(0, d_max-d)**2
        
        def log_normal_barrier(self, sigma, d, c):
            return c*fmax(0, 2-(d/sigma))**2.5
    
        def problem_setup(self, N, x_range, y_range):
            """
            Problem setup for the multi-robot collision resolution traj opt problem
    
            inputs:
                - N (int): number of control intervals
                - x_range (tuple): range of x values
                - y_range (tuple): range of y values
    
            outputs:
                - problem (dict): dictionary containing the optimization problem 
                                  and the decision variables
            """
            opti = Opti() # Optimization problem
    
            # ---- decision variables --------- #
            X = opti.variable(self.num_robots*3, N+1)   # state trajectory (x,y,heading)
            pos = X[:self.num_robots*2,:]               # position is the first two values
            x = pos[0::2,:]
            y = pos[1::2,:]
            heading = X[self.num_robots*2:,:]           # heading is the last value
    
            U = opti.variable(self.num_robots*2, N)     # control trajectory (v, omega)
            vel = U[0::2,:]
            omega = U[1::2,:]
            T = opti.variable()                         # final time
    
            # ---- obstacle setup ------------ #
            circle_obs = DM(self.circle_obs)            # make the obstacles casadi objects 
            
            # ------ Obstacle dist cost ------ #
            # TODO:: Include rectangular obstacles
            dist_to_other_obstacles = 0
            for r in range(self.num_robots):
                for k in range(N):
                    for c in range(circle_obs.shape[0]):
                        circle = circle_obs[c, :]
                        # d = self.dist(pos[2*r : 2*(r+1), k], circle) - self.robot_radius - circle[2]
                        d = sumsqr(pos[2*r : 2*(r+1), k] - transpose(circle[:2])) - 2*self.robot_radius - circle[2]
                        dist_to_other_obstacles += self.apply_quadratic_barrier(3*(self.robot_radius + circle[2]), d, 10)
    
            # ------ Robot dist cost ------ #
            dist_to_other_robots = 0
            for k in range(N):
                for r1 in range(self.num_robots):
                    for r2 in range(self.num_robots):
                        if r1 != r2:
                            d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) - 2*self.robot_radius
                            dist_to_other_robots += self.apply_quadratic_barrier(4*self.robot_radius, d, 12)
    
    
            # ---- dynamics constraints ---- #              
            dt = T/N # length of a control interval
    
            pi = [3.14159]*self.num_robots
            pi = np.array(pi)
            pi = DM(pi)
    
            for k in range(N): # loop over control intervals
                dxdt = vel[:,k] * cos(heading[:,k])
                dydt = vel[:,k] * sin(heading[:,k])
                dthetadt = omega[:,k]
                opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt)
                opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt) 
                opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi))
    
    
            # ------ Control panalty ------ #
            # Calculate the sum of squared differences between consecutive heading angles
            heading_diff_penalty = 0
            for k in range(N-1):
                heading_diff_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi)
    
            # ------ Distance to goal penalty ------ #
            dist_to_goal = 0
            for r in range(self.num_robots):
                # calculate the distance to the goal in the final control interval
                dist_to_goal += sumsqr(pos[2*r : 2*(r+1), -1] - self.goals[r])
    
            # ------ cost function ------ #
            opti.minimize(self.rob_dist_weight*dist_to_other_robots 
                        + self.obs_dist_weight*dist_to_other_obstacles 
                        + self.time_weight*T
                        + self.control_weight*heading_diff_penalty
                        + 20*dist_to_goal
                        + 1*sumsqr(U))
    
    
            # ------ control constraints ------ #
            for k in range(N):
                for r in range(self.num_robots):
                    opti.subject_to(sumsqr(vel[r,k]) <= 0.2**2)
                    opti.subject_to(sumsqr(omega[r,k]) <= 0.2**2)
    
            # ------ bound x, y, and time  ------ #
            opti.subject_to(opti.bounded(x_range[0]+self.robot_radius,x,x_range[1]-self.robot_radius))
            opti.subject_to(opti.bounded(y_range[0]+self.robot_radius,y,y_range[1]-self.robot_radius))
            opti.subject_to(opti.bounded(0,T,100))
    
            # ------ initial conditions ------ #
            for r in range(self.num_robots):
                
                opti.subject_to(heading[r, 0]==self.starts[r][2])
                opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2])
                opti.subject_to(pos[2*r : 2*(r+1), -1] - self.goals[r] <= 1**2)
    
            return {'opti':opti, 'X':X, 'U':U,'T':T}
    
        def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None):
            opti = problem['opti']
            
            if initial_guesses:
                for param, value in initial_guesses.items():
                    # print(f"param = {param}")
                    # print(f"value = {value}")
                    opti.set_initial(problem[param], value)
    
            # Set numerical backend, with options if provided
            if solver_options:
                opti.solver('ipopt', solver_options)
            else:
                opti.solver('ipopt')
    
            try:
                sol = opti.solve()   # actual solve
                status = 'succeeded'
            except:
                sol = None
                status = 'failed'
    
            results = {
                'status' : status,
                'solution' : sol,
            }
    
            if sol:
                for var_name, var in problem.items():
                    if var_name != 'opti':
                        results[var_name] = sol.value(var)
    
            return results
        
        def solve(self, N, x_range, y_range, initial_guesses):
            """
            Setup and solve a multi-robot traj opt problem
    
            input: 
                - N (int): the number of control intervals
                - x_range (tuple): 
                - y_range (tuple): 
            """
            problem = self.problem_setup(N, x_range, y_range)
    
            solver_options = {'ipopt.print_level': 0,
                                'print_time': 0,
                                # 'ipopt.tol': 5,
                                # 'ipopt.acceptable_tol': 5,
                                # 'ipopt.acceptable_iter': 10
                                }
            
            results = self.solve_optimization_problem(problem, initial_guesses, solver_options)
    
            if results['status'] == 'failed':
                return None, None, None, None, None
    
            X = results['X']
            sol = results['solution']
    
            # Extract the values that we want from the optimizer's solution
            pos = X[:self.num_robots*2,:]               
            x_vals = pos[0::2,:]                             
            y_vals = pos[1::2,:]
            theta_vals = X[self.num_robots*2:,:]
    
            return sol,pos, x_vals, y_vals, theta_vals
    
    def plot_paths(circle_obs, num_robots, starts, goals, x_opt, initial_guess, x_range, y_range):
            fig, ax = plt.subplots()
    
            # Plot obstacles
            for obstacle in circle_obs:
                # if len(obstacle) == 2:  # Circle
                ax.add_patch(Circle(obstacle, obstacle[2], color='red'))
                # elif len(obstacle) == 4:  # Rectangle
                #     ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red'))
    
            colors = plt.cm.Set1(np.linspace(0, 1, num_robots))
    
            # Plot robot paths
            for r,color in zip(range(num_robots),colors):
                ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color)
                ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 )
                ax.scatter(starts[r][0], starts[r][1], s=85,color=color)
                ax.scatter(goals[r][0], goals[r][1], s=85,facecolors='none', edgecolors=color)
                if initial_guess is not None:
                    ax.plot(initial_guess[r*3, :], initial_guess[r*3+1, :], color=color, linestyle='--')
                    ax.scatter(initial_guess[r*3, :], initial_guess[r*3+1, :], color=color, s=5 )
    
                plot_roomba(starts[r][0], starts[r][1], 0, color)
    
    
    
            plt.ylim(0, y_range[1])
            plt.xlim(0,x_range[1])
            plt.axis("equal")
            plt.axis("off")
            
    
            plt.tight_layout()
    
            plt.grid(False)
            plt.show()
    
    def plot_paths_db(circle_obs, num_robots, starts, goals, x_opt, initial_guess,x_range, y_range):
            fig, ax = plt.subplots()
    
            # Plot obstacles
            for obstacle in circle_obs:
                # if len(obstacleq) == 2:  # Circle
                ax.add_patch(Circle(obstacle, obstacle[2], color='red'))
                # elif len(obstacle) == 4:  # Rectangle
                #     ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red'))
    
            colors = plt.cm.Set1(np.linspace(0, 1, num_robots))
    
            # Plot robot paths
            for r,color in zip(range(num_robots),colors):
                if x_opt is not None:
                    ax.plot(x_opt[r*2, :], x_opt[r*2+1, :], label=f'Robot {r+1}', color=color)
                    ax.scatter(x_opt[r*2, :], x_opt[r*2+1, :], color=color, s=10 )
                ax.scatter(starts[r][0], starts[r][1], s=85,color=color)
                ax.scatter(goals[r][0], goals[r][1], s=135,facecolors='none', edgecolors=color)
                if initial_guess is not None:
                    ax.plot(initial_guess[r*3, :], initial_guess[r*3+1, :], color=color, linestyle='--')
                    ax.scatter(initial_guess[r*3, :], initial_guess[r*3+1, :], color=color, s=5 )
    
                if x_opt is not None: plot_roomba(starts[r][0], starts[r][1], 0, color)
                # plot_roomba(self.goals[r][0], self.goals[r][1], 0, color)
    
    
    
            plt.ylim(0, y_range[1])
            plt.xlim(0,x_range[1])
            plt.axis("equal")
            # plt.axis("off")
            
    
            plt.tight_layout()
    
            plt.grid(False)
            plt.show()
    
    
    def plot_sim(x_histories, y_histories, h_histories, x_range, y_range):
    
        x_histories = np.array(x_histories)
        y_histories = np.array(y_histories)
        h_histories = np.array(h_histories)
    
        colors = plt.cm.Set1(np.linspace(0, 1, len(x_histories)))
    
    
        longest_traj = max([len(x) for x in x_histories])
    
        for i in range(longest_traj):
            plt.clf()
            for x_history, y_history, h_history, color in zip(x_histories, y_histories, h_histories, colors):
                
                # print(color)
    
                plt.plot(
                    x_history[:i],
                    y_history[:i],
                    c=color,
                    marker=".",
                    alpha=0.5,
                    label="vehicle trajectory",
                )
    
                if i < len(x_history):
                    plot_roomba(x_history[i-1], y_history[i-1], h_history[i-1], color)
                else:
                    plot_roomba(x_history[-1], y_history[-1], h_history[-1], color)
    
            
            plt.ylim(0, y_range[1])
            plt.xlim(0,x_range[1])
            plt.axis("equal")
            # plt.axis("off")
            
    
            plt.tight_layout()
    
            plt.grid(False)
    
            plt.draw()
            # plt.savefig(f"frames/sim_{i}.png")
            # plt.show()
            plt.pause(0.2)
        input()
    
    def plot_roomba(x, y, yaw, color, radius=.7):
        """
    
        Args:
            x ():
            y ():
            yaw ():
        """
        fig = plt.gcf()
        ax = fig.gca()
        circle = plt.Circle((x, y), radius, color=color, fill=False)
        ax.add_patch(circle)
    
        # Plot direction marker
        dx = radius * np.cos(yaw)
        dy = radius * np.sin(yaw)
        ax.arrow(x, y, dx, dy, head_width=0.1, head_length=0.05, fc='r', ec='r')
    
    def generate_prob_from_db(N, lib, cp_dist=-.5, sigma=0.0):
        
    
        d = lib.key_to_idx
    
        # get a random key from the library
        key, idx = random.choice(list(d.items()))
    
        # print(key)
        # print(len(key))
    
        num_robots = len(key) // 4
    
        start_nodes = []
        goal_nodes = []
    
        for i in range(0, len(key), 4):
            start = [int(key[i]), int(key[i+1])]
            goal = [int(key[i+2]), int(key[i+3])]
            start_heading = np.arctan2(goal[1] - start[1], goal[0] - start[0])
            start.append(start_heading)
            start_nodes.append(start)
            goal_nodes.append(goal)
    
    
        sol = lib.get_matching_solution(start_nodes, goal_nodes)
    
        # print(f"sol = {sol}")
    
        # turn this solution into an initial guess 
        initial_guess = np.zeros((num_robots*3, N+1))
        for i in range(num_robots):
    
            # print(f"Robot {i+1} solution:")
            rough_points = np.array(sol[i])
            points = []
            for point in rough_points:
                if point[0] == -1: break
                points.append(point)
            
            points = np.array(points)
            # print(f"points = {points}")
    
            smoothed_curve, _ = smooth_path(points, N+1, cp_dist)
            # print(f"smoothed_curve = {smoothed_curve}")
    
            initial_guess[i*3, :] = smoothed_curve[:, 0]        # x
            initial_guess[i*3 + 1, :] = smoothed_curve[:, 1]    # y
    
            # for j in range(N):
            #     dx = smoothed_curve[j+1, 0] - smoothed_curve[j, 0]
            #     dy = smoothed_curve[j+1, 1] - smoothed_curve[j, 1]
            #     initial_guess[i*3 + 2, j] = np.arctan2(dy, dx)
    
            headings = calculate_headings(smoothed_curve)
            headings.append(headings[-1])
    
            initial_guess[i*3 + 2, :] = headings
    
            # initial_guess[i*3 + 2, :] = np.arctan2(np.diff(smoothed_curve[:, 1]), 
            #                                        np.diff(smoothed_curve[:, 0]))
    
        
    
    
        # print(sol)
    
        # for i in range(num_robots):
        #     print(f"Robot {i+1} initial guess:")
        #     print(f"x: {initial_guess[i*3, :]}")
        #     print(f"y: {initial_guess[i*3 + 1, :]}")
        #     print(f"theta: {initial_guess[i*3 + 2, :]}")
    
        return start_nodes, goal_nodes, initial_guess
    
    if __name__ == "__main__":
    
        import os
        import numpy as np
        import random
    
        # load the yaml file
        import yaml
        with open("tests/initial_guesses.yaml") as file:
            settings = yaml.load(file, Loader=yaml.FullLoader)
    
        seed = 1123581
        seed = 112
        print(f"***Setting Python Seed {seed}***")
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        random.seed(seed)
    
        # define obstacles
        circle_obs = np.array(settings['environment']['circle_obs'])
        rectangle_obs = np.array(settings['environment']['rectangle_obs'])
        
    
        # weights for the cost function
        dist_robots_weight = settings['cost_weights']['dist_robots_weight']
        dist_obstacles_weight = settings['cost_weights']['dist_obstacles_weight']
        control_costs_weight = settings['cost_weights']['control_costs_weight']
        time_weight = settings['cost_weights']['time_weight']
        goal_weight = settings['cost_weights']['goal_weight']
    
        # other params
        rob_radius = settings['robot_radius']
        N = settings['N']
    
        from guided_mrmp.utils import Library
        import random
        lib_name = settings['library']['name']
        lib = Library("guided_mrmp/database/"+lib_name+"_library")
        lib.read_library_from_file()
    
        cp_dist = float(settings['control_point_distance'])
        num_trials = settings['num_trials']
    
        h = settings['grid_resolution']
        x_max = settings['library']['x_max']
        y_max = settings['library']['y_max']
        x_range = (0, x_max*h)
        y_range = (0, y_max*h)
    
    
        times = []
        success = []
        goal_error = []
    
        for i in range(num_trials):
    
            print("i = ", i)
    
            robot_starts, robot_goals, initial_guess = generate_prob_from_db(N,lib, cp_dist)
    
            num_robots = len(robot_starts)
    
            robot_starts = np.array(robot_starts)
            robot_goals = np.array(robot_goals)
            robot_starts = robot_starts*h + .5*h
            robot_goals = robot_goals*h + .5*h
            initial_guess = initial_guess*h + .5*h
    
            initial_guesses = {
                'X': initial_guess,
                'T': settings['initial_guess']['T']
                }
    
            initial_guess_type = settings['initial_guess']['X']
            
            if initial_guess_type == 'line':
                initial_guess = np.zeros((num_robots*3,N+1))
                for i in range(0,num_robots*3,3):
                    start=robot_starts[int(i/3)]
                    goal=robot_goals[int(i/3)]
                    initial_guess[i,:] = np.linspace(start[0], goal[0], N+1)
                    initial_guess[i+1,:] = np.linspace(start[1], goal[1], N+1)
    
                    # make the heading initial guess the difference between consecutive points
                    for j in range(N):
                        dx = initial_guess[i,j+1] - initial_guess[i,j]
                        dy = initial_guess[i+1,j+1] - initial_guess[i+1,j]
                        initial_guess[i+2,j] = np.arctan2(dy,dx)
                
                initial_guesses = {
                'X': initial_guess,
                'T': settings['initial_guess']['T']
                }
    
            
            elif initial_guess_type == 'None':
                initial_guesses = None
    
            solver = TrajOptResolver(num_robots=num_robots, 
                                    robot_radius=rob_radius,
                                    starts=robot_starts, 
                                    goals=robot_goals, 
                                    circle_obstacles=circle_obs, 
                                    rectangle_obstacles=rectangle_obs,
                                    rob_dist_weight=dist_robots_weight,
                                    obs_dist_weight=dist_obstacles_weight,
                                    control_weight=control_costs_weight,
                                    time_weight=time_weight,
                                    goal_weight=goal_weight
                                    )
            
            
    
            solver_options = {'ipopt.print_level': settings['solver_options']['print_level'],
                              'print_time': settings['solver_options']['print_time'],}
    
            
            import time
            start = time.time()
            sol,pos, vels, omegas, xs, ys, thetas = solver.solve(N, x_range, y_range, initial_guesses, solver_options)
            end = time.time()
            # times.append(end-start)
    
    
            if sol is None:
                print("failed")
                success.append(0)
    
            else:
                # check if the solution is valid
                # check if any robots overlap
                valid = True
                for k in range(N):
                    for i in range(num_robots):
                        for j in range(i+1, num_robots):
                            if np.linalg.norm(np.array([xs[i,k] - xs[j,k], ys[i,k] - ys[j,k]]), axis=0) < 2*rob_radius:
                                print("robot collision")
                                valid = False
                                break
                
                        
    
                # check if any robots are in obstacles
                for k in range(N):
                    for i in range(num_robots):
                        for obs in circle_obs:
                            if np.any(np.linalg.norm(np.array([xs[i,k] - obs[0], ys[i,k] - obs[1]]), axis=0) < rob_radius + obs[2]):
                                print("circle collision")
                                valid = False
                                break   
                
                if valid:
                    success.append(1)
    
                    # calculate the average goal error
                    goal_error.append(np.mean(np.linalg.norm(np.array([xs[:,-1] - robot_goals[:,0], ys[:,-1] - robot_goals[:,1]]), axis=0)))
    
                    times.append(end-start)
    
                else:
                    success.append(0)
                    times.append(end-start)
    
                print(f"Time to solve = {end-start}")
                print(sol.stats()["iter_count"])
    
    
                # print(xs)
            
                pos_vals = np.array(sol.value(pos))
    
                # print(xs)
                plot_paths_db(circle_obs, num_robots, robot_starts, robot_goals, None, initial_guess, x_range, y_range)
                # plot_paths_db(circle_obs, num_robots, robot_starts, robot_goals, pos_vals, None, x_range, y_range)
                plot_sim(xs, ys, thetas, x_range, y_range)
    
    
    
        times = np.array(times)
        success = np.array(success)
        goal_error = np.array(goal_error)
        print(f"times = {times}")
        print(f"success = {success}")
        print(f"goal_error = {goal_error}")
        print(f"avg time = {np.mean(times)}")
        print(f"success rate = {np.mean(success)}")
        print(f"avg goal error = {np.mean(goal_error)}")
        # print the standard deviation of the times
        print(f"std dev of time = {np.std(times)}")