Skip to content
Snippets Groups Projects

Scheduler rename

Merged Aaron Councilman requested to merge scheduler-rename into main
16 files
+ 644
45
Compare changes
  • Side-by-side
  • Inline
Files
16
+ 352
0
use hercules_ir::define_id_type;
use hercules_ir::ir::*;
use bitvec::prelude::*;
use crate::*;
use std::collections::{HashMap, HashSet};
use std::marker::PhantomData;
/*
* Top level function for array to product which will convert constant
* sized arrays into products if the array is only accessed at indices which
* are constants.
*
* To identify the collections we can convert we look at each constant-sized
* array constant and compute the set which includes the constant node and is
* closed under the following properties:
* - For each collection in the set, its uses are in the set
* - For each node that uses a collection, all collections it uses are in the
* set
* From this set, we then determine whether this whole set can be converted to
* operating on products, rather than arrays, as follows
* - Each read and write node must be to a constant index
* - It may not contain any arguments (we could generate code to read a an
* array argument into a product, but do not do so for now)
* - There are call or return nodes in the set (this would mean that the
* collections are consumed by a call or return, again we could reconstruct
* the array where needed but do not do so for now and so have this
* restriction)
* - All nodes in the set are editable (if we cannot modify some node then the
* conversion will fail)
*
* The max_size argument allows the user to specify a limit on the size of arrays
* that should be converted to products. If the number of elements in the array
* is larger than the max size the array will not be converted.
*/
pub fn array_to_product(editor: &mut FunctionEditor, types: &[TypeID], max_size: Option<usize>) {
let replace_nodes = array_usage_analysis(editor, types, max_size);
let num_nodes = editor.func().nodes.len();
// Replace nodes
for node_idx in 0..num_nodes {
if !replace_nodes[node_idx] {
continue;
}
let node = NodeID::new(node_idx);
// We can replace the array(s) this node uses with a product. What we have to do depends on
// the type of the node
match &editor.func().nodes[node_idx] {
// Phi, Reduce, and Ternary just use the whole collection, they do not need to change,
// except as they will be modified by replace_all_uses_of
Node::Phi { .. }
| Node::Reduce { .. }
| Node::Ternary {
op: TernaryOperator::Select,
..
} => {}
Node::Constant { id } => {
assert!(editor.get_constant(*id).is_array());
let element: TypeID = editor.get_type(types[node_idx]).try_element_type().unwrap();
let dims: Vec<usize> = editor
.get_type(types[node_idx])
.try_extents()
.unwrap()
.iter()
.map(|dc| editor.get_dynamic_constant(*dc).try_constant().unwrap())
.collect();
// Replace the constant by a product that is a product (for each dimension) and the
// elements are zero'd
editor.edit(|mut edit| {
let element_zero = edit.add_zero_constant(element);
let (constant, _) = dims.into_iter().rfold(
(element_zero, element),
|(cur_const, cur_type), dim| {
let new_type = edit.add_type(Type::Product(vec![cur_type; dim].into()));
let new_const = edit.add_constant(Constant::Product(
new_type,
vec![cur_const; dim].into(),
));
(new_const, new_type)
},
);
let new_val = edit.add_node(Node::Constant { id: constant });
let edit = edit.replace_all_uses(node, new_val)?;
edit.delete_node(node)
});
}
Node::Read { collect, indices } => {
let collect = *collect;
let new_indices = convert_indices_to_prod(editor, indices);
editor.edit(|mut edit| {
let new_val = edit.add_node(Node::Read {
collect,
indices: new_indices,
});
let edit = edit.replace_all_uses(NodeID::new(node_idx), new_val)?;
edit.delete_node(node)
});
}
Node::Write {
collect,
data,
indices,
} => {
let collect = *collect;
let data = *data;
let new_indices = convert_indices_to_prod(editor, indices);
editor.edit(|mut edit| {
let new_val = edit.add_node(Node::Write {
collect,
data,
indices: new_indices,
});
let edit = edit.replace_all_uses(NodeID::new(node_idx), new_val)?;
edit.delete_node(node)
});
}
node => panic!("Node cannot be replaced: {:?}", node),
}
}
}
fn convert_indices_to_prod(editor: &FunctionEditor, indices: &[Index]) -> Box<[Index]> {
let mut result = vec![];
for index in indices {
match index {
Index::Position(positions) => {
for pos in positions {
let const_id = editor.func().nodes[pos.idx()]
.try_constant()
.expect("Array position must be constant");
match *editor.get_constant(const_id) {
Constant::UnsignedInteger64(idx) => result.push(Index::Field(idx as usize)),
ref val => panic!("Position should be u64 constant: {:?}", val),
}
}
}
index => panic!("Index cannot be replaced: {:?}", index),
}
}
result.into()
}
// Given the editor, while compute a mask of which nodes are to be converted
// from using a constant sized array into using a product
fn array_usage_analysis(
editor: &FunctionEditor,
types: &[TypeID],
max_size: Option<usize>,
) -> BitVec<u8, Lsb0> {
let num_nodes = editor.func().nodes.len();
// Step 1: identify the constant nodes that are constant sized arrays no larger than the
// max_size, these are what we are interested in converting into products
let sources = editor
.func()
.nodes
.iter()
.enumerate()
.filter_map(|(idx, node)| {
let Node::Constant { id } = node else {
return None;
};
let Constant::Array(array_type) = *editor.get_constant(*id) else {
return None;
};
let typ = editor.get_type(array_type);
let Some(dims) = typ.try_extents() else {
return None;
};
// Compute the total number of elements, the result is None if some dimension is not a
// constant and otherwise is Some(num_elements) which we can then compare with max_size
if let Some(elements) = dims.iter().fold(Some(1), |prod, dc| {
prod.and_then(|prod| {
editor
.get_dynamic_constant(*dc)
.try_constant()
.map(|dim| prod * dim)
})
}) {
if let Some(max_size) = max_size
&& elements > max_size
{
// Too many elements, don't convert
None
} else {
Some(NodeID::new(idx))
}
} else {
None
}
})
.collect::<Vec<_>>();
// Step 2: collect the collection information we need for the (whole) function. For each node
// that returns a collection (that in reference semantics returns the same reference as some of
// its inputs) union with all of its users. The nodes that matter in this are arguments,
// constants, writes, phis, selects, and reduces with array types.
let mut analysis = UnionFind::new();
for node_idx in 0..num_nodes {
let node_id = NodeID::new(node_idx);
if editor.get_type(types[node_idx]).is_array() {
match editor.func().nodes[node_idx] {
Node::Phi { .. }
| Node::Reduce { .. }
| Node::Parameter { .. }
| Node::Constant { .. }
| Node::Ternary {
op: TernaryOperator::Select,
..
}
| Node::Write { .. } => {
for user in editor.get_users(node_id) {
analysis.union(node_id, user);
}
}
_ => {}
}
}
}
let sets = analysis.sets(&sources);
// Step 3: determine which sets can be converted and mark the nodes in those sets
let mut result = bitvec![u8, Lsb0; 0; num_nodes];
for nodes in sets {
if nodes
.iter()
.all(|node_id| editor.is_mutable(*node_id) && can_replace(editor, *node_id))
{
for node_id in nodes {
result.set(node_id.idx(), true);
}
}
}
result
}
fn can_replace(editor: &FunctionEditor, node: NodeID) -> bool {
match &editor.func().nodes[node.idx()] {
// Reads and writes must be at constant indices
Node::Read { indices, .. } | Node::Write { indices, .. } => {
indices.iter().all(|idx| match idx {
Index::Position(pos) => pos
.iter()
.all(|node| editor.func().nodes[node.idx()].is_constant()),
_ => false,
})
}
// phi, reduce, constants, and select can always be replaced if their users and uses allow
// it, which is handled by the construction of the set
Node::Phi { .. }
| Node::Reduce { .. }
| Node::Constant { .. }
| Node::Ternary {
op: TernaryOperator::Select,
..
} => true,
// No other nodes allow replacement
_ => false,
}
}
define_id_type!(SetID);
#[derive(Clone, Debug)]
struct UnionFindNode {
parent: SetID,
rank: usize,
}
#[derive(Clone, Debug)]
struct UnionFind<T> {
sets: Vec<UnionFindNode>,
_phantom: PhantomData<T>,
}
impl<T: ID> UnionFind<T> {
pub fn new() -> Self {
UnionFind {
sets: vec![],
_phantom: PhantomData,
}
}
fn extend_past(&mut self, size: usize) {
for i in self.sets.len()..=size {
// The new nodes we add are in their own sets and have rank 0
self.sets.push(UnionFindNode {
parent: SetID::new(i),
rank: 0,
});
}
}
pub fn find(&mut self, x: T) -> SetID {
self.extend_past(x.idx());
self.find_set(x.idx())
}
fn find_set(&mut self, x: usize) -> SetID {
let mut parent = self.sets[x].parent;
if parent.idx() != x {
parent = self.find_set(parent.idx());
self.sets[x].parent = parent;
}
parent
}
pub fn union(&mut self, x: T, y: T) {
let x = self.find(x);
let y = self.find(y);
self.link(x, y);
}
fn link(&mut self, x: SetID, y: SetID) {
if self.sets[x.idx()].rank > self.sets[y.idx()].rank {
self.sets[y.idx()].parent = x;
} else {
self.sets[x.idx()].parent = y;
if self.sets[x.idx()].rank == self.sets[y.idx()].rank {
self.sets[y.idx()].rank += 1;
}
}
}
pub fn sets(&mut self, keys: &[T]) -> Vec<Vec<T>> {
let key_index = keys
.iter()
.enumerate()
.map(|(i, k)| (self.find(*k), i))
.collect::<HashMap<SetID, usize>>();
let mut result = vec![vec![]; keys.len()];
let num_elements = self.sets.len();
for i in 0..num_elements {
let set = self.find_set(i);
let Some(idx) = key_index.get(&set) else {
continue;
};
result[*idx].push(T::new(i));
}
result
}
}
Loading