Skip to content
Snippets Groups Projects
  1. Oct 07, 2019
    • Guy Jacob's avatar
      Post-Train Quant: Greedy Search + Proper mixed-settings handling (#402) · 9e7ef987
      Guy Jacob authored
      
      * Greedy search script for post-training quantization settings
        * Iterates over each layer in the model in order. For each layer,
          checks a user-defined set of quantization settings and chooses
          the best one based on validation accuracy
        * Provided sample that searches for best activations-clipping
          mode per layer, on image classification models
      
      * Proper handling of mixed-quantization settings in post-train quant:
        * By default, the quantization settings for each layer apply only
          to output quantization
        * Propagate quantization settings for activations tensors through
          the model during execution
        * For non-quantized inputs to layers that require quantized inputs,
          fall-back to quantizing according to the settings used for the
          output
        * In addition, provide mechanism to override inputs quantization
          settings via the YAML configuration file
        * By default all modules are quantized now. For module types that
          don't have a dedicated quantized implementation, "fake"
          quantization is performed
      
      * Misc. Changes
        * Fuse ReLU/ReLU6 to predecessor during post-training quantization
        * Fixes to ACIQ clipping in the half-range case
      
      Co-authored-by: default avatarLev Zlotnik <lev.zlotnik@intel.com>
      Co-authored-by: default avatarGuy Jacob <guy.jacob@intel.com>
      9e7ef987
  2. Aug 07, 2019
  3. Jul 04, 2019
    • Guy Jacob's avatar
      Switch to PyTorch 1.1.0 (#306) · 032b1f74
      Guy Jacob authored
      * PyTorch 1.1.0 now required
        - Moved other dependencies to up-to-date versions as well
      * Adapt LR scheduler to PyTorch 1.1 API changes:
        - Change lr_scheduler.step() calls to succeed validate calls,
          during training
        - Pass to lr_scheduler.step() caller both loss and top1
          (Resolves issue #240)
      * Adapt thinning for PyTorch 1.1 semantic changes
        - **KNOWN ISSUE**: When a thinning recipe is applied, in certain
          cases PyTorch displays this warning:
          "UserWarning: non-inplace resize is deprecated".
          To be fixed later
      * SummaryGraph: Workaround for new scope name issue from PyTorch 1.1.0
      * Adapt to updated PyTest version:
        - Stop using deprecated 'message' parameter of pytest.raises(),
          use pytest.fail() instead
        - Make sure only a single test case per pytest.raises context
      * Move PyTorch version check to root __init__.py 
        - This means the version each checked when Distiller is first
          imported. A RuntimeError is raised if the version is wrong.
      * Updates to parameter_histograms notebook:
        - Replace deprecated normed argument with density
        - Add sparsity rate to plot title
        - Load model in CPU
      032b1f74
  4. May 27, 2019
    • Lev Zlotnik's avatar
      Bug fix for shared module (#268) · d6efbe40
      Lev Zlotnik authored
      * Fixed bug where a shared module which was supposed to be skipped wasn't skipped on the second reference
      
      * Added tests for new bug fix
      d6efbe40
  5. May 19, 2019
  6. May 02, 2019
  7. Apr 08, 2019
  8. Apr 01, 2019
    • Lev Zlotnik's avatar
      Quantizer: Specify # bias bits + custom overrides (BREAKING) (#178) · 5271625a
      Lev Zlotnik authored
      * Bias handling:
        * Add 'bits_bias' parameter to explicitly specify # of bits for bias,
          similar to weights and activations.
        * BREAKING: Remove the now redundant 'quantize_bias' boolean parameter
      * Custom overrides:
        * Expand the semantics of the overrides dict to allow overriding of
          other parameters in addition to bit-widths
        * Functions registered in the quantizer's 'replacement_factory' can
          define keyword arguments. Non bit-width entries in the overrides
          dict will be checked against the function signature and passed
        * BREAKING:
          * Changed the name of 'bits_overrides' to simply 'overrides'
          * Bit-width overrides must now be defined using the full parameter
            names - 'bits_activations/weights/bias' instead of the short-hands
            'acts' and 'wts' which were used so far.
        * Added/updated relevant tests
        * Modified all quantization YAMLs under 'examples' to reflect 
          these changes
        * Updated docs
      5271625a
  9. Feb 26, 2019
  10. Feb 11, 2019
    • Guy Jacob's avatar
      Post-train quant based on stats + additional modules quantized (#136) · 28a8ee18
      Guy Jacob authored
      Summary of changes:
      (1) Post-train quantization based on pre-collected statistics
      (2) Quantized concat, element-wise addition / multiplication and embeddings
      (3) Move post-train quantization command line args out of sample code
      (4) Configure post-train quantization from YAML for more fine-grained control
      
      (See PR #136 for more detailed changes descriptions)
      28a8ee18
  11. Jan 24, 2019
  12. Jan 23, 2019
  13. Dec 04, 2018
    • Guy Jacob's avatar
      Range-Based Linear Quantization Features (#95) · 907a6f04
      Guy Jacob authored
      * Asymmetric post-training quantization (only symmetric supported so until now)
      * Quantization aware training for range-based (min-max) symmetric and asymmetric quantization
      * Per-channel quantization support in both training and post-training
      * Added tests and examples
      * Updated documentation
      907a6f04
  14. Jul 22, 2018
    • Gal Novik's avatar
      PACT quantizer (#30) · df9a00ce
      Gal Novik authored
      * Adding PACT quantization method
      * Move logic modifying the optimizer due to changes the quantizer makes into the Quantizer itself
      * Updated documentation and tests
      df9a00ce
  15. Jul 17, 2018
    • Guy Jacob's avatar
      Quantizer tests, fixes and docs update · 6b166cec
      Guy Jacob authored
      * Add Quantizer unit tests
      * Require 'bits_overrides' to be OrderedDict to support overlapping
        patterns in a predictable manner + update documentation to reflect this
      * Quantizer class cleanup
        * Use "public" nn.Module APIs instead of protected attributes
        * Call the builtins set/get/delattr instead of the class special methods
          (__***__)
        * Fix issues reported in #24
      * Bug in RangeLinearQuantParamLayerWrapper - add explicit override of
        pre_quantized_forward accpeting single input (#15)
      * Add DoReFa test to full_flow_tests
      6b166cec
Loading