- Jul 04, 2019
-
-
Guy Jacob authored
* PyTorch 1.1.0 now required - Moved other dependencies to up-to-date versions as well * Adapt LR scheduler to PyTorch 1.1 API changes: - Change lr_scheduler.step() calls to succeed validate calls, during training - Pass to lr_scheduler.step() caller both loss and top1 (Resolves issue #240) * Adapt thinning for PyTorch 1.1 semantic changes - **KNOWN ISSUE**: When a thinning recipe is applied, in certain cases PyTorch displays this warning: "UserWarning: non-inplace resize is deprecated". To be fixed later * SummaryGraph: Workaround for new scope name issue from PyTorch 1.1.0 * Adapt to updated PyTest version: - Stop using deprecated 'message' parameter of pytest.raises(), use pytest.fail() instead - Make sure only a single test case per pytest.raises context * Move PyTorch version check to root __init__.py - This means the version each checked when Distiller is first imported. A RuntimeError is raised if the version is wrong. * Updates to parameter_histograms notebook: - Replace deprecated normed argument with density - Add sparsity rate to plot title - Load model in CPU
-
- Jul 03, 2019
-
-
Guy Jacob authored
-
- Jun 03, 2019
-
-
Lev Zlotnik authored
* In PostTrainLinearQuantizer - moved 'clip_acts' and 'clip_n_stds' to overrides, removed 'no_clip_layers' parameter from __init__ * The 'no_clip_layers' command line argument REMAINS, handled in PostTrainLinearQuantizer.from_args() * Removed old code from comments, fixed warnings in test_post_train_quant.py * Updated tests * Update post-train quant sample YAML
-
- Apr 18, 2019
-
-
Bar authored
Also: * Single worker limitation not needed anymore, been fixed in PyTorch since v0.4.0 (https://github.com/pytorch/pytorch/pull/4640) * compress_classifier.py: If run in evaluation mode (--eval), enable deterministic mode. * Call utils.set_deterministic at data loaders creation if deterministic argument is set (don't assume user calls it outside) * Disable CUDNN benchmark mode in utils.set_deterministic (https://pytorch.org/docs/stable/notes/randomness.html#cudnn)
-
- Feb 26, 2019
-
-
Lev Zlotnik authored
Not backward compatible - re-installation is required * Fixes for PyTorch==1.0.0 * Refactoring folder structure * Update installation section in docs
-
- Feb 10, 2019
-
-
Guy Jacob authored
* For CIFAR-10 / ImageNet only * Refactor data_loaders.py, reduce code duplication * Implemented custom sampler * Integrated in image classification sample * Since we now shuffle the test set, had to update expected results in 2 full_flow_tests that do evaluation
-
- Dec 04, 2018
-
-
Guy Jacob authored
* Asymmetric post-training quantization (only symmetric supported so until now) * Quantization aware training for range-based (min-max) symmetric and asymmetric quantization * Per-channel quantization support in both training and post-training * Added tests and examples * Updated documentation
-
- Nov 22, 2018
-
-
Neta Zmora authored
* Fix issue #79 Change the default values so that the following scheduler meta-data keys are always defined: 'starting_epoch', 'ending_epoch', 'frequency' * compress_classifier.py: add a new argument Allow the specification, from the command line arguments, of the range of pruning levels scanned when doing sensitivity analysis * Add regression test for issue #79
-
- Nov 01, 2018
-
-
Guy Jacob authored
* Added command line arguments for this and other post-training quantization settings in image classification sample.
-
- Jul 22, 2018
-
-
Gal Novik authored
* Adding PACT quantization method * Move logic modifying the optimizer due to changes the quantizer makes into the Quantizer itself * Updated documentation and tests
-
- Jul 17, 2018
-
-
Guy Jacob authored
* Add Quantizer unit tests * Require 'bits_overrides' to be OrderedDict to support overlapping patterns in a predictable manner + update documentation to reflect this * Quantizer class cleanup * Use "public" nn.Module APIs instead of protected attributes * Call the builtins set/get/delattr instead of the class special methods (__***__) * Fix issues reported in #24 * Bug in RangeLinearQuantParamLayerWrapper - add explicit override of pre_quantized_forward accpeting single input (#15) * Add DoReFa test to full_flow_tests
-
- May 14, 2018
-
-
Guy Jacob authored
-
- Apr 24, 2018
-
-
Neta Zmora authored
-