Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
distiller
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
distiller
Commits
94af2955
"git@gitlab.engr.illinois.edu:rmoan2/db-guided-mrmp.git" did not exist on "e7cc3d4c77f53f6034503e9eb5a72fce48f4d2fa"
Commit
94af2955
authored
4 years ago
by
Guy Jacob
Browse files
Options
Downloads
Patches
Plain Diff
Restore resnet56_cifar_baseline_training.yaml
parent
408fb1bd
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml
+93
-0
93 additions, 0 deletions
..._efficient_convnets/resnet56_cifar_baseline_training.yaml
with
93 additions
and
0 deletions
examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml
0 → 100644
+
93
−
0
View file @
94af2955
# We used this schedule to train CIFAR10-ResNet56 from scratch
#
# time python3 compress_classifier.py --arch resnet56_cifar ../../../data.cifar10 -p=50 --lr=0.3 --epochs=180 --compress=../pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml -j=1 --deterministic
#
# Target: 6.96% error was reported Pruning Filters for Efficient Convnets
#
# Parameters:
# +----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
# | | Name | Shape | NNZ (dense) | NNZ (sparse) | Cols (%) | Rows (%) | Ch (%) | 2D (%) | 3D (%) | Fine (%) | Std | Mean | Abs-Mean |
# |----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
# | 0 | module.conv1.weight | (16, 3, 3, 3) | 432 | 432 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.39191 | 0.00826 | 0.18757 |
# | 1 | module.layer1.0.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08334 | -0.00180 | 0.03892 |
# | 2 | module.layer1.0.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08565 | -0.00033 | 0.05106 |
# | 3 | module.layer1.1.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08190 | 0.00082 | 0.04765 |
# | 4 | module.layer1.1.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08365 | -0.00600 | 0.05459 |
# | 5 | module.layer1.2.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.09640 | -0.00182 | 0.06337 |
# | 6 | module.layer1.2.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.09881 | -0.00400 | 0.07056 |
# | 7 | module.layer1.3.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.13412 | -0.00416 | 0.08827 |
# | 8 | module.layer1.3.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12693 | -0.00271 | 0.09395 |
# | 9 | module.layer1.4.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12149 | -0.01105 | 0.09064 |
# | 10 | module.layer1.4.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.11322 | 0.00333 | 0.08556 |
# | 11 | module.layer1.5.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12076 | -0.01164 | 0.09311 |
# | 12 | module.layer1.5.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.11627 | -0.00355 | 0.08882 |
# | 13 | module.layer1.6.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12492 | -0.00637 | 0.09493 |
# | 14 | module.layer1.6.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.11240 | -0.00837 | 0.08710 |
# | 15 | module.layer1.7.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.13819 | -0.00735 | 0.10096 |
# | 16 | module.layer1.7.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.11107 | -0.00293 | 0.08613 |
# | 17 | module.layer1.8.conv1.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12269 | -0.01133 | 0.09511 |
# | 18 | module.layer1.8.conv2.weight | (16, 16, 3, 3) | 2304 | 2304 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.09276 | 0.00240 | 0.07117 |
# | 19 | module.layer2.0.conv1.weight | (32, 16, 3, 3) | 4608 | 4608 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.13876 | -0.01190 | 0.11061 |
# | 20 | module.layer2.0.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12728 | -0.00499 | 0.10012 |
# | 21 | module.layer2.0.downsample.0.weight | (32, 16, 1, 1) | 512 | 512 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.24306 | -0.01255 | 0.19073 |
# | 22 | module.layer2.1.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.11474 | -0.00995 | 0.09044 |
# | 23 | module.layer2.1.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.10452 | -0.00440 | 0.08196 |
# | 24 | module.layer2.2.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.09873 | -0.00629 | 0.07833 |
# | 25 | module.layer2.2.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08747 | -0.00393 | 0.06891 |
# | 26 | module.layer2.3.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.09434 | -0.00762 | 0.07469 |
# | 27 | module.layer2.3.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.07984 | -0.00449 | 0.06271 |
# | 28 | module.layer2.4.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08767 | -0.00733 | 0.06852 |
# | 29 | module.layer2.4.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.06642 | -0.00396 | 0.05196 |
# | 30 | module.layer2.5.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.07521 | -0.00699 | 0.05799 |
# | 31 | module.layer2.5.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.05739 | -0.00351 | 0.04334 |
# | 32 | module.layer2.6.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.06130 | -0.00595 | 0.04791 |
# | 33 | module.layer2.6.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.04703 | -0.00519 | 0.03527 |
# | 34 | module.layer2.7.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.06366 | -0.00734 | 0.04806 |
# | 35 | module.layer2.7.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.04591 | -0.00131 | 0.03282 |
# | 36 | module.layer2.8.conv1.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.05903 | -0.00606 | 0.04555 |
# | 37 | module.layer2.8.conv2.weight | (32, 32, 3, 3) | 9216 | 9216 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.04344 | -0.00566 | 0.03290 |
# | 38 | module.layer3.0.conv1.weight | (64, 32, 3, 3) | 18432 | 18432 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.08262 | 0.00251 | 0.06520 |
# | 39 | module.layer3.0.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.06248 | 0.00073 | 0.04578 |
# | 40 | module.layer3.0.downsample.0.weight | (64, 32, 1, 1) | 2048 | 2048 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.12275 | 0.01139 | 0.08651 |
# | 41 | module.layer3.1.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03438 | -0.00186 | 0.02419 |
# | 42 | module.layer3.1.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03091 | -0.00368 | 0.02203 |
# | 43 | module.layer3.2.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03477 | -0.00226 | 0.02499 |
# | 44 | module.layer3.2.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03012 | -0.00350 | 0.02159 |
# | 45 | module.layer3.3.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03577 | -0.00166 | 0.02608 |
# | 46 | module.layer3.3.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02962 | -0.00124 | 0.02115 |
# | 47 | module.layer3.4.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03694 | -0.00285 | 0.02677 |
# | 48 | module.layer3.4.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02916 | -0.00165 | 0.02024 |
# | 49 | module.layer3.5.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03158 | -0.00180 | 0.02342 |
# | 50 | module.layer3.5.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02527 | -0.00177 | 0.01787 |
# | 51 | module.layer3.6.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03074 | -0.00169 | 0.02256 |
# | 52 | module.layer3.6.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02406 | -0.00006 | 0.01658 |
# | 53 | module.layer3.7.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.03160 | -0.00249 | 0.02294 |
# | 54 | module.layer3.7.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02298 | -0.00083 | 0.01553 |
# | 55 | module.layer3.8.conv1.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02594 | -0.00219 | 0.01890 |
# | 56 | module.layer3.8.conv2.weight | (64, 64, 3, 3) | 36864 | 36864 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.01986 | -0.00061 | 0.01318 |
# | 57 | module.fc.weight | (10, 64) | 640 | 640 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.52562 | -0.00003 | 0.39168 |
# | 58 | Total sparsity: | - | 851504 | 851504 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
# +----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
# 2018-07-02 16:36:31,555 - Total sparsity: 0.00
#
# 2018-07-02 16:36:31,555 - --- validate (epoch=179)-----------
# 2018-07-02 16:36:31,555 - 5000 samples (256 per mini-batch)
# 2018-07-02 16:36:33,121 - ==> Top1: 91.520 Top5: 99.680 Loss: 0.387
#
# 2018-07-02 16:36:33,123 - Saving checkpoint to: logs/2018.07.02-152746/checkpoint.pth.tar
# 2018-07-02 16:36:33,159 - --- test ---------------------
# 2018-07-02 16:36:33,159 - 10000 samples (256 per mini-batch)
# 2018-07-02 16:36:36,194 - ==> Top1: 92.850 Top5: 99.780 Loss: 0.364
lr_schedulers
:
training_lr
:
class
:
StepLR
step_size
:
45
gamma
:
0.10
policies
:
-
lr_scheduler
:
instance_name
:
training_lr
starting_epoch
:
35
ending_epoch
:
200
frequency
:
1
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment