From 94af2955f99de8222bd83c1fc46f4000b3ecb130 Mon Sep 17 00:00:00 2001
From: Guy Jacob <guy.jacob@intel.com>
Date: Mon, 11 May 2020 09:48:24 +0300
Subject: [PATCH] Restore resnet56_cifar_baseline_training.yaml

---
 .../resnet56_cifar_baseline_training.yaml     | 93 +++++++++++++++++++
 1 file changed, 93 insertions(+)
 create mode 100644 examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml

diff --git a/examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml b/examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml
new file mode 100644
index 0000000..8692301
--- /dev/null
+++ b/examples/pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml
@@ -0,0 +1,93 @@
+# We used this schedule to train CIFAR10-ResNet56 from scratch
+#
+# time python3 compress_classifier.py --arch resnet56_cifar  ../../../data.cifar10 -p=50 --lr=0.3 --epochs=180 --compress=../pruning_filters_for_efficient_convnets/resnet56_cifar_baseline_training.yaml -j=1 --deterministic
+#
+# Target: 6.96% error was reported Pruning Filters for Efficient Convnets
+#
+# Parameters:
+# +----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# |    | Name                                | Shape          |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
+# |----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
+# |  0 | module.conv1.weight                 | (16, 3, 3, 3)  |           432 |            432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.39191 |  0.00826 |    0.18757 |
+# |  1 | module.layer1.0.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08334 | -0.00180 |    0.03892 |
+# |  2 | module.layer1.0.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08565 | -0.00033 |    0.05106 |
+# |  3 | module.layer1.1.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08190 |  0.00082 |    0.04765 |
+# |  4 | module.layer1.1.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08365 | -0.00600 |    0.05459 |
+# |  5 | module.layer1.2.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09640 | -0.00182 |    0.06337 |
+# |  6 | module.layer1.2.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09881 | -0.00400 |    0.07056 |
+# |  7 | module.layer1.3.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13412 | -0.00416 |    0.08827 |
+# |  8 | module.layer1.3.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12693 | -0.00271 |    0.09395 |
+# |  9 | module.layer1.4.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12149 | -0.01105 |    0.09064 |
+# | 10 | module.layer1.4.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11322 |  0.00333 |    0.08556 |
+# | 11 | module.layer1.5.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12076 | -0.01164 |    0.09311 |
+# | 12 | module.layer1.5.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11627 | -0.00355 |    0.08882 |
+# | 13 | module.layer1.6.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12492 | -0.00637 |    0.09493 |
+# | 14 | module.layer1.6.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11240 | -0.00837 |    0.08710 |
+# | 15 | module.layer1.7.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13819 | -0.00735 |    0.10096 |
+# | 16 | module.layer1.7.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11107 | -0.00293 |    0.08613 |
+# | 17 | module.layer1.8.conv1.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12269 | -0.01133 |    0.09511 |
+# | 18 | module.layer1.8.conv2.weight        | (16, 16, 3, 3) |          2304 |           2304 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09276 |  0.00240 |    0.07117 |
+# | 19 | module.layer2.0.conv1.weight        | (32, 16, 3, 3) |          4608 |           4608 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.13876 | -0.01190 |    0.11061 |
+# | 20 | module.layer2.0.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12728 | -0.00499 |    0.10012 |
+# | 21 | module.layer2.0.downsample.0.weight | (32, 16, 1, 1) |           512 |            512 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.24306 | -0.01255 |    0.19073 |
+# | 22 | module.layer2.1.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.11474 | -0.00995 |    0.09044 |
+# | 23 | module.layer2.1.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.10452 | -0.00440 |    0.08196 |
+# | 24 | module.layer2.2.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09873 | -0.00629 |    0.07833 |
+# | 25 | module.layer2.2.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08747 | -0.00393 |    0.06891 |
+# | 26 | module.layer2.3.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.09434 | -0.00762 |    0.07469 |
+# | 27 | module.layer2.3.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07984 | -0.00449 |    0.06271 |
+# | 28 | module.layer2.4.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08767 | -0.00733 |    0.06852 |
+# | 29 | module.layer2.4.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06642 | -0.00396 |    0.05196 |
+# | 30 | module.layer2.5.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07521 | -0.00699 |    0.05799 |
+# | 31 | module.layer2.5.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.05739 | -0.00351 |    0.04334 |
+# | 32 | module.layer2.6.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06130 | -0.00595 |    0.04791 |
+# | 33 | module.layer2.6.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04703 | -0.00519 |    0.03527 |
+# | 34 | module.layer2.7.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06366 | -0.00734 |    0.04806 |
+# | 35 | module.layer2.7.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04591 | -0.00131 |    0.03282 |
+# | 36 | module.layer2.8.conv1.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.05903 | -0.00606 |    0.04555 |
+# | 37 | module.layer2.8.conv2.weight        | (32, 32, 3, 3) |          9216 |           9216 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04344 | -0.00566 |    0.03290 |
+# | 38 | module.layer3.0.conv1.weight        | (64, 32, 3, 3) |         18432 |          18432 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.08262 |  0.00251 |    0.06520 |
+# | 39 | module.layer3.0.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06248 |  0.00073 |    0.04578 |
+# | 40 | module.layer3.0.downsample.0.weight | (64, 32, 1, 1) |          2048 |           2048 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.12275 |  0.01139 |    0.08651 |
+# | 41 | module.layer3.1.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03438 | -0.00186 |    0.02419 |
+# | 42 | module.layer3.1.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03091 | -0.00368 |    0.02203 |
+# | 43 | module.layer3.2.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03477 | -0.00226 |    0.02499 |
+# | 44 | module.layer3.2.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03012 | -0.00350 |    0.02159 |
+# | 45 | module.layer3.3.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03577 | -0.00166 |    0.02608 |
+# | 46 | module.layer3.3.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02962 | -0.00124 |    0.02115 |
+# | 47 | module.layer3.4.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03694 | -0.00285 |    0.02677 |
+# | 48 | module.layer3.4.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02916 | -0.00165 |    0.02024 |
+# | 49 | module.layer3.5.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03158 | -0.00180 |    0.02342 |
+# | 50 | module.layer3.5.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02527 | -0.00177 |    0.01787 |
+# | 51 | module.layer3.6.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03074 | -0.00169 |    0.02256 |
+# | 52 | module.layer3.6.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02406 | -0.00006 |    0.01658 |
+# | 53 | module.layer3.7.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.03160 | -0.00249 |    0.02294 |
+# | 54 | module.layer3.7.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02298 | -0.00083 |    0.01553 |
+# | 55 | module.layer3.8.conv1.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02594 | -0.00219 |    0.01890 |
+# | 56 | module.layer3.8.conv2.weight        | (64, 64, 3, 3) |         36864 |          36864 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.01986 | -0.00061 |    0.01318 |
+# | 57 | module.fc.weight                    | (10, 64)       |           640 |            640 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.52562 | -0.00003 |    0.39168 |
+# | 58 | Total sparsity:                     | -              |        851504 |         851504 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
+# +----+-------------------------------------+----------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
+# 2018-07-02 16:36:31,555 - Total sparsity: 0.00
+#
+# 2018-07-02 16:36:31,555 - --- validate (epoch=179)-----------
+# 2018-07-02 16:36:31,555 - 5000 samples (256 per mini-batch)
+# 2018-07-02 16:36:33,121 - ==> Top1: 91.520    Top5: 99.680    Loss: 0.387
+#
+# 2018-07-02 16:36:33,123 - Saving checkpoint to: logs/2018.07.02-152746/checkpoint.pth.tar
+# 2018-07-02 16:36:33,159 - --- test ---------------------
+# 2018-07-02 16:36:33,159 - 10000 samples (256 per mini-batch)
+# 2018-07-02 16:36:36,194 - ==> Top1: 92.850    Top5: 99.780    Loss: 0.364
+
+lr_schedulers:
+  training_lr:
+    class: StepLR
+    step_size: 45
+    gamma: 0.10
+
+policies:
+    - lr_scheduler:
+        instance_name: training_lr
+      starting_epoch: 35
+      ending_epoch: 200
+      frequency: 1
-- 
GitLab