Skip to content
Snippets Groups Projects
Commit 44144f7c authored by Guy Jacob's avatar Guy Jacob
Browse files

A couple of clarifications and typo fixes from last commit

parent 6d455597
No related branches found
No related tags found
No related merge requests found
...@@ -5,8 +5,8 @@ ...@@ -5,8 +5,8 @@
# python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_base_fp32.yaml --wd=0.0002 --vs=0 --gpus 0 # python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_base_fp32.yaml --wd=0.0002 --vs=0 --gpus 0
# #
# Notes: # Notes:
# * Replace '-a preact_resnet20_cifar' with the required depth # * In '-a preact_resnet20_cifar', replace '20' with the required depth
# * '--wd-0.0002': Weight decay of 0.0002 is used # * '--wd=0.0002': Weight decay of 0.0002 is used
# * '--vs=0': We train on the entire training dataset, and validate using the test set # * '--vs=0': We train on the entire training dataset, and validate using the test set
# #
# Knowledge Distillation: # Knowledge Distillation:
...@@ -38,8 +38,8 @@ policies: ...@@ -38,8 +38,8 @@ policies:
ending_epoch: 200 ending_epoch: 200
frequency: 1 frequency: 1
# The results listed here are based on 4 runs in each configuration: # The results listed here are based on 4 runs in each configuration. All results are Top-1:
#
# +-------+--------------+-------------------------+ # +-------+--------------+-------------------------+
# | | | FP32 | # | | | FP32 |
# +-------+--------------+-------------------------+ # +-------+--------------+-------------------------+
......
...@@ -9,8 +9,8 @@ ...@@ -9,8 +9,8 @@
# python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_dorefa.yaml --wd=0.0002 --vs=0 --gpus 0 # python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_dorefa.yaml --wd=0.0002 --vs=0 --gpus 0
# #
# Notes: # Notes:
# * Replace '-a preact_resnet20_cifar' with the required depth # * In '-a preact_resnet20_cifar', replace '20' with the required depth
# * '--wd-0.0002': Weight decay of 0.0002 is used # * '--wd=0.0002': Weight decay of 0.0002 is used
# * '--vs=0': We train on the entire training dataset, and validate using the test set # * '--vs=0': We train on the entire training dataset, and validate using the test set
# #
# Knowledge Distillation: # Knowledge Distillation:
...@@ -68,8 +68,8 @@ policies: ...@@ -68,8 +68,8 @@ policies:
ending_epoch: 161 ending_epoch: 161
frequency: 1 frequency: 1
# The results listed here are based on 4 runs in each configuration: # The results listed here are based on 4 runs in each configuration. All results are Top-1:
#
# +-------+--------------+-------------------------+-------------------------+ # +-------+--------------+-------------------------+-------------------------+
# | | | FP32 | DoReFa w3-a8 | # | | | FP32 | DoReFa w3-a8 |
# +-------+--------------+-------------------------+-------------------------+ # +-------+--------------+-------------------------+-------------------------+
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment