From 44144f7c7a61c2f6057053b63f7866b0d151924a Mon Sep 17 00:00:00 2001 From: Guy Jacob <guy.jacob@intel.com> Date: Sun, 2 Dec 2018 15:13:26 +0200 Subject: [PATCH] A couple of clarifications and typo fixes from last commit --- examples/quantization/preact_resnet_cifar_base_fp32.yaml | 8 ++++---- examples/quantization/preact_resnet_cifar_dorefa.yaml | 8 ++++---- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/examples/quantization/preact_resnet_cifar_base_fp32.yaml b/examples/quantization/preact_resnet_cifar_base_fp32.yaml index 3b5b41d..40e7636 100644 --- a/examples/quantization/preact_resnet_cifar_base_fp32.yaml +++ b/examples/quantization/preact_resnet_cifar_base_fp32.yaml @@ -5,8 +5,8 @@ # python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_base_fp32.yaml --wd=0.0002 --vs=0 --gpus 0 # # Notes: -# * Replace '-a preact_resnet20_cifar' with the required depth -# * '--wd-0.0002': Weight decay of 0.0002 is used +# * In '-a preact_resnet20_cifar', replace '20' with the required depth +# * '--wd=0.0002': Weight decay of 0.0002 is used # * '--vs=0': We train on the entire training dataset, and validate using the test set # # Knowledge Distillation: @@ -38,8 +38,8 @@ policies: ending_epoch: 200 frequency: 1 -# The results listed here are based on 4 runs in each configuration: - +# The results listed here are based on 4 runs in each configuration. All results are Top-1: +# # +-------+--------------+-------------------------+ # | | | FP32 | # +-------+--------------+-------------------------+ diff --git a/examples/quantization/preact_resnet_cifar_dorefa.yaml b/examples/quantization/preact_resnet_cifar_dorefa.yaml index 7ae1faa..cec1f54 100644 --- a/examples/quantization/preact_resnet_cifar_dorefa.yaml +++ b/examples/quantization/preact_resnet_cifar_dorefa.yaml @@ -9,8 +9,8 @@ # python compress_classifier.py -a preact_resnet20_cifar --lr 0.1 -p 50 -b 128 <path_to_cifar10_dataset> -j 1 --epochs 200 --compress=../quantization/preact_resnet_cifar_dorefa.yaml --wd=0.0002 --vs=0 --gpus 0 # # Notes: -# * Replace '-a preact_resnet20_cifar' with the required depth -# * '--wd-0.0002': Weight decay of 0.0002 is used +# * In '-a preact_resnet20_cifar', replace '20' with the required depth +# * '--wd=0.0002': Weight decay of 0.0002 is used # * '--vs=0': We train on the entire training dataset, and validate using the test set # # Knowledge Distillation: @@ -68,8 +68,8 @@ policies: ending_epoch: 161 frequency: 1 -# The results listed here are based on 4 runs in each configuration: - +# The results listed here are based on 4 runs in each configuration. All results are Top-1: +# # +-------+--------------+-------------------------+-------------------------+ # | | | FP32 | DoReFa w3-a8 | # +-------+--------------+-------------------------+-------------------------+ -- GitLab