Newer
Older
import cv2
import numpy as np
import math
zalonzo2
committed
from PIL import ImageDraw
zalonzo2
committed
import chess
import easyocr
# global show_cv because I didn't want to have show_cv as an input to every function
zalonzo2
committed
# also need skip_camera so I can use cv2.imshow if I'm using my PC
show_cv = None
zalonzo2
committed
skip_camera = None
img_size = None
def init_global(bool1, bool2, bool3):
global show_cv
zalonzo2
committed
global skip_camera
global img_size
show_cv = bool1
skip_camera = bool2
img_size = bool3
# had to write a custom img display function because conflict with picamera2 and opencv made it so I can't use imshow
# (I had to install headless opencv to remove conflict which removes imshow)
def display_img(img_array):
zalonzo2
committed
max_windows = 5
if len(img_array) < max_windows: # prevent spamming windows if accidentally input an image instead of array of images (guess why this is here)
if skip_camera: # if not running on raspi
for i, cv2_img in enumerate(img_array):
cv2.imshow('Image ' + str(i+1), cv2_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
else: # if running on raspi
for cv2_img in img_array:
pil_img = cv2_to_pil(cv2_img)
pil_img.show()
input()
for proc in psutil.process_iter():
if proc.name() == "display":
proc.kill()
else:
print(f"Too many images (>{max_windows})")
def cv2_to_pil(cv2_img):
rgb_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb_img)
return pil_img
def pil_to_cv2(pil_image):
cv2_img = np.array(pil_image, dtype=np.uint8)
cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
return cv2_img
def find_lines(img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray_img, 50, 100, apertureSize=3)
h,w = edges.shape
# don't detect any lines at the edges (make the edges black)
zalonzo2
committed
cutoff = int(w * 0.01)
for y in range(0,h):
for x in range(0,w):
if x < cutoff or x > w - cutoff or y < cutoff or y > h - cutoff:
edges[y, x] = 0
if (show_cv):
theta_thresh = 60
horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh)
vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh)
vertical_line_points = convert_to_cartesian(vertical_lines)
horizontal_line_points = convert_to_cartesian(horizontal_lines)
# filter lines too close to each other
zalonzo2
committed
filtered_vertical = filter_lines(vertical_line_points, int(img_size/10))
filtered_horizontal = filter_lines(horizontal_line_points, int(img_size/10))
# get the 9 largest lines
sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9]
sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9]
return sorted_vertical, sorted_horizontal
def convert_to_cartesian(lines):
line_points = []
if lines is not None:
for line in lines:
rho, theta = line[0]
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
x0 = cos_theta * rho
y0 = sin_theta * rho
x1 = int(x0 + 1000 * (-sin_theta))
y1 = int(y0 + 1000 * (cos_theta))
x2 = int(x0 - 1000 * (-sin_theta))
y2 = int(y0 - 1000 * (cos_theta))
line_points.append([[x1,y1,x2,y2]])
return line_points
def filter_lines(lines, min_distance):
filtered_lines = []
# filter out lines too close to each other
# (this assumes lines are around the same size and parallel)
# (extremely simplified to improve computational speed because this is all we need)
if lines is not None:
for line1 in lines:
x1, y1, x2, y2 = line1[0]
line1_x_avg = (x1 + x2) / 2
line1_y_avg = (y1 + y2) / 2
keep_line = True
for line2 in filtered_lines:
x3, y3, x4, y4 = line2[0]
line2_x_avg = (x3 + x4) / 2
line2_y_avg = (y3 + y4) / 2
# calculate dist between average points of the 2 lines
dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2)
if dist < min_distance:
keep_line = False
break
if keep_line:
filtered_lines.append(line1)
return filtered_lines
def find_board(img):
zalonzo2
committed
vertical_lines, horizontal_lines = find_lines(img)
# create bitmasks for vert and horiz so we can get lines and intersections
height, width, _ = img.shape
vertical_mask = np.zeros((height, width), dtype=np.uint8)
horizontal_mask = np.zeros((height, width), dtype=np.uint8)
for line in vertical_lines:
x1, y1, x2, y2 = line[0]
cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2)
for line in horizontal_lines:
x1, y1, x2, y2 = line[0]
cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
# get lines and intersections of grid and corresponding contours
intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if (show_cv):
intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid)
intersection_points = []
for contour in intersections:
M = cv2.moments(contour)
if (M["m00"] != 0):
midpoint_x = int(M["m10"] / M["m00"])
midpoint_y = int(M["m01"] / M["m00"])
intersection_points.append((midpoint_x, midpoint_y))
# sort the coordinates from left to right then top to bottom
sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False)
board_lines_img = img.copy()
cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2)
i = 0
for points in sorted_intersection_points:
for point in points:
cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1)
i += 1
zalonzo2
committed
if (len(vertical_lines) != 9 or len(horizontal_lines) != 9):
print("Error: Grid does not match expected 9x9")
print("# of Vertical:",len(vertical_lines))
print("# of Horizontal:",len(horizontal_lines))
return None, None
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# find largest contour and get rid of it because it contains weird edges from lines
max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi)
largest = -1
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
largest = i
# "largest" is index of largest contour
# get rid of contour containing the edges of the lines
contours = list(contours)
contours.pop(largest)
contours = tuple(contours)
# thicken lines so that connections are made
contour_mask = np.zeros((height, width), dtype=np.uint8)
cv2.drawContours(contour_mask, contours, -1, (255), thickness=10)
thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it
max_area = 100000
largest = -1
max_rect = None
for i, contour in enumerate(thick_contours):
area = cv2.contourArea(contour)
if area > max_area:
epsilon = 0.05 * cv2.arcLength(contour, True)
rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill)
if (len(rect) == 4):
max_area = area
largest = i
max_rect = rect
# perspective transform based on rectangle outline of board
corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements
corners = [tuple(corner) for corner in corners] # convert to tuples
corners_sorted = sort_square_grid_coords(corners, unpacked=True)
zalonzo2
committed
tl, tr, bl, br = corners_sorted
src = np.float32([list(tl), list(tr), list(bl), list(br)])
dest = np.float32([[0,0], [width, 0], [0, height], [width, height]])
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_img = img.copy()
warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height))
# perspective transform the intersections as well
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_ip = intersection.copy() # warped intersection points
warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
warped_intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find midpoints of warped intersection contours (this gives us exact coordinates of the corners of the grid)
warped_intersection_points = []
for contour in warped_intersections:
M = cv2.moments(contour)
if (M["m00"] != 0):
midpoint_x = int(M["m10"] / M["m00"])
midpoint_y = int(M["m01"] / M["m00"])
warped_intersection_points.append((midpoint_x, midpoint_y))
# sort the coordinates from left to right then top to bottom
sorted_warped_points = sort_square_grid_coords(warped_intersection_points, unpacked=False)
if (show_cv):
contours_img = img.copy()
cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2)
cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2)
cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2)
for x,y in corners:
cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1)
return warped_img, sorted_warped_points
def find_pieces(warped_img, sorted_warped_points):
hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV)
zalonzo2
committed
gray_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2GRAY)
zalonzo2
committed
# threshold to find strongest colors in image
zalonzo2
committed
saturation_thresh = 60
brightness_thresh = 80
hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], saturation_thresh, 255) # saturation mask
hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], brightness_thresh, 255) # brightness mask
hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright)
zalonzo2
committed
hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask)
bgr_after = cv2.cvtColor(hsv_after, cv2.COLOR_HSV2BGR)
zalonzo2
committed
gray_after = cv2.cvtColor(bgr_after, cv2.COLOR_BGR2GRAY)
zalonzo2
committed
hue_thresh_dict = {'red': (170,190), 'orange':(8,20), 'yellow': (20,44), 'green': (50,70), 'blue': (105,120), 'purple': (120,140),
'teal': (90,105), 'pink': (140,170)} # CHANGE
zalonzo2
committed
if (show_cv):
warped_img_pil = cv2_to_pil(warped_img)
warped_img_draw = ImageDraw.Draw(warped_img_pil)
filled_contour_mask = np.zeros_like(hsv_after)
pixel_thresh = 60
count = 0
color_grid = []
# loop through each square of chess board
for i in range(0,8):
color_grid.append([])
for j in range(0,8):
# establish corners of current square
tl = sorted_warped_points[i][j]
tr = sorted_warped_points[i][j+1]
bl = sorted_warped_points[i+1][j]
br = sorted_warped_points[i+1][j+1]
zalonzo2
committed
# # create a polygon mask for current grid square
# # (this is because square is not always perfectly square so I can't just loop pixels from tl to tr then bl to br)
# # (this might not be worth the extra computation required to shave off a few pixels from being considered)
# height, width, _ = warped_img.shape
# rect_mask = np.zeros((height, width), dtype=np.uint8)
# poly = np.array([[tl, tr, br, bl]], dtype=np.int32)
# cv2.fillPoly(rect_mask, poly, 255)
# num_pixels = 1
# hue = 0
# # loop through a perfect square that is slightly bigger than actual "square." obtain average hue of color in grid square
# for x in range(min(tl[0],bl[0]), max(tr[0],br[0])):
# for y in range(min(tl[1],tr[1]), max(bl[1],br[1])):
# if rect_mask[y,x] == 255 and hsv_after[y, x, 0] != 0:
# num_pixels += 1
# hue += hsv_after[y, x, 0]
# avg_hue = hue / num_pixels
height, width, _ = warped_img.shape
rect_mask = np.zeros((height, width), dtype=np.uint8)
poly = np.array([[tl, tr, br, bl]], dtype=np.int32)
cv2.fillPoly(rect_mask, poly, 255)
zalonzo2
committed
masked_hsv_after = cv2.bitwise_and(gray_after, gray_after, mask=rect_mask)
# display_img([masked_hsv_after])
contours, hierarchy = cv2.findContours(masked_hsv_after, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# print(contours)
num_pixels = 1
hue = 0
zalonzo2
committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
avg_hue = 0
if contours is not None:
try:
largest_contour = max(contours, key=cv2.contourArea)
except ValueError:
print("No contours")
largest_contour = None
if largest_contour is not None:
cv2.drawContours(filled_contour_mask, [largest_contour], -1, (255, 0, 0), thickness=cv2.FILLED)
# cv2.drawContours(warped_img, largest_contour, -1, (255, 255, 0), 2)
# display_img([filled_contour_mask])
num_pixels = 1
hue = 0
for x in range(min(tl[0],bl[0]), max(tr[0],br[0])):
for y in range(min(tl[1],tr[1]), max(bl[1],br[1])):
if filled_contour_mask[y, x, 0] > 0 and hsv_after[y, x, 0] != 0:
num_pixels += 1
hue += hsv_after[y, x, 0]
avg_hue = hue / num_pixels
# if num_pixels < pixel_thresh:
# cv2.drawContours(filled_contour_mask, [largest_contour], -1, (0, 0, 0), thickness=cv2.FILLED)
# for pixel in largest_contour:
# y,x = pixel[0]
# # display_img([hsv_after])
# if hsv_after[y, x, 0] != 0:
# num_pixels += 1
# hue += hsv_after[y, x, 0]
# avg_hue = hue / num_pixels
# if there is a color in square, then label based on custom hue thresholds and add to color_grid
piece_found = False
if avg_hue != 0:
for color, (lower, upper) in hue_thresh_dict.items():
zalonzo2
committed
if lower <= avg_hue < upper:
zalonzo2
committed
color_grid[i].append([color, avg_hue, num_pixels, None])
piece_found = True
zalonzo2
committed
if show_cv and num_pixels > pixel_thresh:
y,x = tl[0] + 5, tl[1] + 5
warped_img_draw.text((y,x), color, fill=(255, 0, 0)) # draw color found onto image
if piece_found == False:
zalonzo2
committed
color_grid[i].append([None, avg_hue, num_pixels, None])
count += 1
if show_cv:
zalonzo2
committed
warped_img_draw = pil_to_cv2(warped_img_draw._image)
bgr_after_intersections = bgr_after.copy()
for points in sorted_warped_points:
for point in points:
cv2.circle(bgr_after_intersections, point, 1, (255, 255, 255), -1)
zalonzo2
committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
display_img([warped_img_draw, bgr_after_intersections, filled_contour_mask])
# reader = easyocr.Reader(['en'], gpu=False)
# results = reader.readtext(
# image=warped_img,
# allowlist="PKQRBNpkqrbn",
# # rotation_info=[180],
# # batch_size=2,
# # text_threshold=0.01,
# # slope_ths=0.0
# )
# print(len(results))
# for text, _, _ in results:
# print(text)
gray_masked = cv2.bitwise_and(gray_after, gray_after, mask=filled_contour_mask[:,:,0])
# gray_masked[gray_masked != 0] = 255
scale = 5
size = img_size*scale
img_to_read = cv2.resize(gray_masked, (size, size))
reader = easyocr.Reader(['en'])
results = reader.readtext(
image=img_to_read,
allowlist="PKQRBN",
rotation_info=[180],
batch_size=12,
text_threshold=0.3,
slope_ths=0.0,
min_size=int(size/100)
)
img_to_read = cv2.cvtColor(img_to_read, cv2.COLOR_GRAY2BGR)
img_to_read = cv2.resize(img_to_read, (img_size, img_size))
if show_cv:
img_to_read_pil = cv2_to_pil(img_to_read)
img_to_draw = ImageDraw.Draw(img_to_read_pil)
for result in results:
bound_box, letter = result[0:2]
y_min, x_min = [int(min(val)/scale) for val in zip(*bound_box)]
y_max, x_max = [int(max(val)/scale) for val in zip(*bound_box)]
# cv2.circle(img_to_read, (int(x_min + (x_max - x_min)/2), int(y_min + (y_max - y_min)/2)), 1, (0, 255, 0), 2)
# cv2.circle(img_to_read, (x_min, y_min), 1, (0, 255, 0), 2)
# cv2.putText(img_to_read, letter, (x_min, y_min), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
y_center, x_center = (int(y_min + (y_max - y_min)/2), int(x_min + (x_max - x_min)/2))
x_grid = int(x_center / img_size * 8)
y_grid = int(y_center / img_size * 8)
print(y_grid, x_grid, letter)
color_grid[x_grid][y_grid][3] = letter
if show_cv:
img_to_draw.text((y_min - 10, x_min), letter, fill=(255, 0, 0))
# print color_grid. only print when the color is found a lot in the square (> 100 times)
if show_cv:
# print("|avg_hue, num_pixels, letter|")
for row in color_grid:
print("||", end="")
for color, avg_hue, num_pixels, letter in row:
if num_pixels > pixel_thresh:
# print(f"{int(avg_hue)},{num_pixels},{letter}\t|", end="")
print(f"{color}, {letter}\t|", end="")
else:
print("\t\t|", end="")
print("|")
if show_cv:
img_to_draw = pil_to_cv2(img_to_draw._image)
display_img([img_to_draw])
return color_grid
def sort_square_grid_coords(coordinates, unpacked):
# this function assumes there are a perfect square amount of coordinates
sqrt_len = int(math.sqrt(len(coordinates)))
sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values
# then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9)
rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
for row in rows:
row.sort(key=lambda coord: coord[0]) # now sort each row by x
if (unpacked == False):
return rows
collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples
return collapsed