Newer
Older
import cv2
import numpy as np
import math
# global show_cv because I didn't want to have show_cv as an input to every function
show_cv = None
def init_show_cv(val):
global show_cv
show_cv = val
def find_longest_lines(img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray_img, 50, 100, apertureSize=3)
if (show_cv):
cv2.imshow('Canny Filter', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
theta_thresh = 60
horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh)
vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh)
vertical_line_points = convert_to_cartesian(vertical_lines)
horizontal_line_points = convert_to_cartesian(horizontal_lines)
# filter lines too close to each other
filtered_vertical = filter_lines(vertical_line_points, 50)
filtered_horizontal = filter_lines(horizontal_line_points, 50)
# get the 9 largest lines
sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9]
sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9]
return sorted_vertical, sorted_horizontal
def convert_to_cartesian(lines):
line_points = []
if lines is not None:
for line in lines:
rho, theta = line[0]
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
x0 = cos_theta * rho
y0 = sin_theta * rho
x1 = int(x0 + 1000 * (-sin_theta))
y1 = int(y0 + 1000 * (cos_theta))
x2 = int(x0 - 1000 * (-sin_theta))
y2 = int(y0 - 1000 * (cos_theta))
line_points.append([[x1,y1,x2,y2]])
return line_points
def filter_lines(lines, min_distance):
filtered_lines = []
# filter out lines too close to each other
# (this assumes lines are around the same size and parallel)
# (extremely simplified to improve computational speed because this is all we need)
if lines is not None:
for line1 in lines:
x1, y1, x2, y2 = line1[0]
line1_x_avg = (x1 + x2) / 2
line1_y_avg = (y1 + y2) / 2
keep_line = True
for line2 in filtered_lines:
x3, y3, x4, y4 = line2[0]
line2_x_avg = (x3 + x4) / 2
line2_y_avg = (y3 + y4) / 2
# calculate dist between average points of the 2 lines
dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2)
if dist < min_distance:
keep_line = False
break
if keep_line:
filtered_lines.append(line1)
return filtered_lines
def detect_board(img):
vertical_lines, horizontal_lines = find_longest_lines(img)
print("# of Vertical:",len(vertical_lines))
print("# of Horizontal:",len(horizontal_lines))
height, width, _ = img.shape
black_img = np.zeros((height, width), dtype=np.uint8)
# create bitmasks for vert and horiz so we can get lines and intersections
height, width, _ = img.shape
vertical_mask = np.zeros((height, width), dtype=np.uint8)
horizontal_mask = np.zeros((height, width), dtype=np.uint8)
for line in vertical_lines:
x1, y1, x2, y2 = line[0]
cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2)
for line in horizontal_lines:
x1, y1, x2, y2 = line[0]
cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid)
intersection_points = []
for contour in intersections:
M = cv2.moments(contour)
if (M["m00"] != 0):
midpoint_x = int(M["m10"] / M["m00"])
midpoint_y = int(M["m01"] / M["m00"])
intersection_points.append((midpoint_x, midpoint_y))
# sort the coordinates from left to right then top to bottom
sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False)
if (show_cv):
board_lines_img = img.copy()
cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2)
# cv2.drawContours(board_lines_img, intersections, -1, (0, 0, 255), 2)
i = 0
for points in sorted_intersection_points:
for point in points:
cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1)
i += 1
print(i)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
cv2.imshow('Lines of Board', board_lines_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# find largest contour and get rid of it because it contains weird edges from lines
max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi)
largest = -1
# second_largest = -1
# max_rect = None
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
largest = i
# "largest" is index of largest contour
# get rid of contour containing the edges of the lines
contours = list(contours)
contours.pop(largest)
contours = tuple(contours)
# thicken lines so that connections are made
contour_mask = np.zeros((height, width), dtype=np.uint8)
cv2.drawContours(contour_mask, contours, -1, (255), thickness=10)
thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it
max_area = 100000
largest = -1
max_rect = None
for i, contour in enumerate(thick_contours):
area = cv2.contourArea(contour)
if area > max_area:
epsilon = 0.05 * cv2.arcLength(contour, True)
rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill)
if (len(rect) == 4):
max_area = area
largest = i
max_rect = rect
# perspective transform based on rectangle outline of board
corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements
corners = [tuple(corner) for corner in corners] # convert to tuples
print(corners)
# corners.sort(key=lambda coord: (coord[0], coord[1])) # sort coords. goes from bottom left clockwise to bottom right - DIDN'T WORK
corners_sorted = sort_square_grid_coords(corners, unpacked=True)
print(corners_sorted)
# corners_img = img.copy()
# for i, corner in enumerate(corners_sorted):
# cv2.circle(corners_img, corner, 5, (60 * i, 60 * i, 60 * i), -1)
# if (show_cv):
# cv2.imshow('Canny Filter', corners_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
tl = corners_sorted[0]
tr = corners_sorted[1]
bl = corners_sorted[2]
br = corners_sorted[3]
src = np.float32([list(tl), list(tr), list(bl), list(br)])
dest = np.float32([[0,0], [width, 0], [0, height], [width, height]])
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_img = img.copy()
warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height))
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_ip = img.copy()
warped_ip = cv2.drawContours(warped_ip, intersections, -1, (0, 0, 255), 2)
warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
if (show_cv):
contours_img = img.copy()
# for i in range(63):
# cv2.drawContours(contours_img, [sorted_contours[i]], -1, (255-4*i, 4*i, 0), 2)
cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2)
cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2)
cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2)
for x,y in corners:
cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1)
# cv2.circle(contours_img, (int(min_x), int(min_y)), 5, (255, 0, 0), -1)
# cv2.circle(contours_img, (int(max_x), int(max_y)), 5, (255, 0, 0), -1)
cv2.imshow('Contours', contours_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow('Warped', warped_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# cv2.imshow('Warped', warped_ip)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
def sort_square_grid_coords(coordinates, unpacked):
sqrt_len = int(math.sqrt(len(coordinates)))
sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values
# then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9)
groups = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
for group in groups:
group.sort(key=lambda coord: coord[0]) # now sort each row by x
if (unpacked == False):
return groups
collapsed_groups = [coord for sublist in groups for coord in sublist] # unpack/collapse groups to just be an array of tuples
return collapsed_groups