Newer
Older
import cv2
import numpy as np
import math
# import os
from PIL import Image
import psutil
import time
# global show_cv because I didn't want to have show_cv as an input to every function
show_cv = None
def init_show_cv(val):
global show_cv
show_cv = val
# had to write a custom img display function because conflict with picamera2 and opencv made it so I can't use imshow
# (I had to install headless opencv to remove conflict which removes imshow)
def display_img(img_array):
if len(img_array) < 5: # prevent spamming windows if accidentally input an image instead of array of images
for cv2_img in img_array:
rgb_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb_img)
pil_img.show()
input()
for proc in psutil.process_iter():
if proc.name() == "display":
proc.kill()
def find_longest_lines(img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray_img, 50, 100, apertureSize=3)
if (show_cv):
# cv2.imshow('Canny Filter', edges)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
display_img([edges])
theta_thresh = 60
horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh)
vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh)
vertical_line_points = convert_to_cartesian(vertical_lines)
horizontal_line_points = convert_to_cartesian(horizontal_lines)
# filter lines too close to each other
filtered_vertical = filter_lines(vertical_line_points, 50)
filtered_horizontal = filter_lines(horizontal_line_points, 50)
# get the 9 largest lines
sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9]
sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9]
return sorted_vertical, sorted_horizontal
def convert_to_cartesian(lines):
line_points = []
if lines is not None:
for line in lines:
rho, theta = line[0]
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
x0 = cos_theta * rho
y0 = sin_theta * rho
x1 = int(x0 + 1000 * (-sin_theta))
y1 = int(y0 + 1000 * (cos_theta))
x2 = int(x0 - 1000 * (-sin_theta))
y2 = int(y0 - 1000 * (cos_theta))
line_points.append([[x1,y1,x2,y2]])
return line_points
def filter_lines(lines, min_distance):
filtered_lines = []
# filter out lines too close to each other
# (this assumes lines are around the same size and parallel)
# (extremely simplified to improve computational speed because this is all we need)
if lines is not None:
for line1 in lines:
x1, y1, x2, y2 = line1[0]
line1_x_avg = (x1 + x2) / 2
line1_y_avg = (y1 + y2) / 2
keep_line = True
for line2 in filtered_lines:
x3, y3, x4, y4 = line2[0]
line2_x_avg = (x3 + x4) / 2
line2_y_avg = (y3 + y4) / 2
# calculate dist between average points of the 2 lines
dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2)
if dist < min_distance:
keep_line = False
break
if keep_line:
filtered_lines.append(line1)
return filtered_lines
def find_board(img):
vertical_lines, horizontal_lines = find_longest_lines(img)
# create bitmasks for vert and horiz so we can get lines and intersections
height, width, _ = img.shape
vertical_mask = np.zeros((height, width), dtype=np.uint8)
horizontal_mask = np.zeros((height, width), dtype=np.uint8)
for line in vertical_lines:
x1, y1, x2, y2 = line[0]
cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2)
for line in horizontal_lines:
x1, y1, x2, y2 = line[0]
cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
# get lines and intersections of grid and corresponding contours
intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if (show_cv):
intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid)
intersection_points = []
for contour in intersections:
M = cv2.moments(contour)
if (M["m00"] != 0):
midpoint_x = int(M["m10"] / M["m00"])
midpoint_y = int(M["m01"] / M["m00"])
intersection_points.append((midpoint_x, midpoint_y))
# sort the coordinates from left to right then top to bottom
sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False)
board_lines_img = img.copy()
cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2)
i = 0
for points in sorted_intersection_points:
for point in points:
cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1)
i += 1
# cv2.imshow('Lines of Board', board_lines_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
display_img([board_lines_img])
if (len(vertical_lines) != 9 or len(horizontal_lines) != 9):
print("Error: Grid does not match expected 9x9")
print("# of Vertical:",len(vertical_lines))
print("# of Horizontal:",len(horizontal_lines))
return None, None
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# find largest contour and get rid of it because it contains weird edges from lines
max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi)
largest = -1
# second_largest = -1
# max_rect = None
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
largest = i
# "largest" is index of largest contour
# get rid of contour containing the edges of the lines
contours = list(contours)
contours.pop(largest)
contours = tuple(contours)
# thicken lines so that connections are made
contour_mask = np.zeros((height, width), dtype=np.uint8)
cv2.drawContours(contour_mask, contours, -1, (255), thickness=10)
thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it
max_area = 100000
largest = -1
max_rect = None
for i, contour in enumerate(thick_contours):
area = cv2.contourArea(contour)
if area > max_area:
epsilon = 0.05 * cv2.arcLength(contour, True)
rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill)
if (len(rect) == 4):
max_area = area
largest = i
max_rect = rect
# perspective transform based on rectangle outline of board
corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements
corners = [tuple(corner) for corner in corners] # convert to tuples
corners_sorted = sort_square_grid_coords(corners, unpacked=True)
tl = corners_sorted[0]
tr = corners_sorted[1]
bl = corners_sorted[2]
br = corners_sorted[3]
src = np.float32([list(tl), list(tr), list(bl), list(br)])
dest = np.float32([[0,0], [width, 0], [0, height], [width, height]])
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_img = img.copy()
warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height))
# perspective transform the intersections as well
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_ip = intersection.copy() # warped intersection points
warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
warped_intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find midpoints of warped intersection contours (this gives us exact coordinates of the corners of the grid)
warped_intersection_points = []
for contour in warped_intersections:
M = cv2.moments(contour)
if (M["m00"] != 0):
midpoint_x = int(M["m10"] / M["m00"])
midpoint_y = int(M["m01"] / M["m00"])
warped_intersection_points.append((midpoint_x, midpoint_y))
# sort the coordinates from left to right then top to bottom
sorted_warped_points = sort_square_grid_coords(warped_intersection_points, unpacked=False)
if (show_cv):
contours_img = img.copy()
cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2)
cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2)
cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2)
for x,y in corners:
cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1)
# cv2.imshow('Contours', contours_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
display_img([contours_img])
return warped_img, sorted_warped_points
def find_pieces(warped_img, sorted_warped_points):
hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV)
zalonzo2
committed
# threshold to find strongest colors in image
hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], 60, 255) # saturation mask
hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], 100, 255) # brightness mask
hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright)
zalonzo2
committed
hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask)
bgr_after = cv2.cvtColor(hsv_after, cv2.COLOR_HSV2BGR)
zalonzo2
committed
hue_thresh_dict = {'red': (170,190), 'orange':(8,20), 'yellow': (20,40), 'green': (50,70), 'blue': (105,120), 'purple': (120,140),
'teal': (90,105), 'pink': (140,170)}
count = 0
color_grid = []
# loop through each square of chess board
for i in range(0,8):
color_grid.append([])
for j in range(0,8):
# establish corners of current square
tl = sorted_warped_points[i][j]
tr = sorted_warped_points[i][j+1]
bl = sorted_warped_points[i+1][j]
br = sorted_warped_points[i+1][j+1]
# create a polygon mask for current grid square
# (this is because square is not always perfectly square so I can't just loop pixels from tl to tr then bl to br)
# (this might not be worth the extra computation required to shave off a few pixels from being considered)
height, width, _ = warped_img.shape
rect_mask = np.zeros((height, width), dtype=np.uint8)
poly = np.array([[tl, tr, br, bl]], dtype=np.int32)
cv2.fillPoly(rect_mask, poly, 255)
num_pixels = 1
hue = 0
# loop through a perfect square that is slightly bigger than actual "square." obtain average hue of color in grid square
for x in range(min(tl[0],bl[0]), max(tr[0],br[0])):
for y in range(min(tl[1],tr[1]), max(bl[1],br[1])):
if rect_mask[y,x] == 255 and hsv_after[y, x, 0] != 0:
num_pixels += 1
hue += hsv_after[y, x, 0]
avg_hue = hue / num_pixels
# if there is a color in square, then label based on custom hue thresholds and add to color_grid
piece_found = False
if avg_hue != 0:
for color, (lower, upper) in hue_thresh_dict.items():
zalonzo2
committed
if lower <= avg_hue < upper:
color_grid[i].append((color, avg_hue, num_pixels))
piece_found = True
break # should only do this once
if piece_found == False:
zalonzo2
committed
color_grid[i].append((None, avg_hue, num_pixels))
count += 1
zalonzo2
committed
# print color_grid. only print when the color is found a lot in the square (> 100 times)
for row in color_grid:
print("||", end="")
zalonzo2
committed
for color, avg_hue, num_pixels in row:
if num_pixels > 100:
print(color,int(avg_hue), "\t|", end="")
else:
zalonzo2
committed
print("\t\t|", end="")
print("|")
if show_cv:
bgr_after_intersections = bgr_after.copy()
for points in sorted_warped_points:
for point in points:
cv2.circle(bgr_after_intersections, point, 1, (255, 255, 255), -1)
display_img([warped_img, bgr_after_intersections])
# cv2.imshow('hsv_after_intersections', bgr_after_intersections)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
return color_grid
def sort_square_grid_coords(coordinates, unpacked):
# this function assumes there are a perfect square amount of coordinates
sqrt_len = int(math.sqrt(len(coordinates)))
sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values
# then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9)
rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
for row in rows:
row.sort(key=lambda coord: coord[0]) # now sort each row by x
if (unpacked == False):
return rows
collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples
return collapsed