Skip to content
Snippets Groups Projects
board_detector.py 13.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • zalonzo2's avatar
    zalonzo2 committed
    # import os
    from PIL import Image
    import psutil
    import time
    
    
    # global show_cv because I didn't want to have show_cv as an input to every function
    show_cv = None
    def init_show_cv(val):
        global show_cv
        show_cv = val
    
    
    zalonzo2's avatar
    zalonzo2 committed
    # had to write a custom img display function because conflict with picamera2 and opencv made it so I can't use imshow
    # (I had to install headless opencv to remove conflict which removes imshow)
    def display_img(img_array):
        if len(img_array) < 5: # prevent spamming windows if accidentally input an image instead of array of images
            for cv2_img in img_array:
                rgb_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)
                pil_img = Image.fromarray(rgb_img) 
                pil_img.show()
        input()
        for proc in psutil.process_iter():
            if proc.name() == "display":
                proc.kill()
    
    
    def find_longest_lines(img):
        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
        edges = cv2.Canny(gray_img, 50, 100, apertureSize=3)
    
    zalonzo2's avatar
    zalonzo2 committed
            # cv2.imshow('Canny Filter', edges)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
            display_img([edges])
    
        theta_thresh = 60
        horizontal_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=(theta_thresh/2-1)*np.pi/theta_thresh, max_theta=(theta_thresh/2+1)*np.pi/theta_thresh)
        vertical_lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=60, min_theta=-np.pi/theta_thresh, max_theta=np.pi/theta_thresh)
    
        vertical_line_points = convert_to_cartesian(vertical_lines)
        horizontal_line_points = convert_to_cartesian(horizontal_lines)
    
        # filter lines too close to each other
    
        filtered_vertical = filter_lines(vertical_line_points, 50)
        filtered_horizontal = filter_lines(horizontal_line_points, 50)
    
        # get the 9 largest lines
    
        sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))[:9]
        sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))[:9]
    
        return sorted_vertical, sorted_horizontal
    
    
    def convert_to_cartesian(lines):
    
        if lines is not None:
            for line in lines:
    
                rho, theta = line[0]
    
                cos_theta  = np.cos(theta)
                sin_theta = np.sin(theta)
    
                x0 = cos_theta * rho
                y0 = sin_theta * rho
    
                x1 = int(x0 + 1000 * (-sin_theta))
                y1 = int(y0 + 1000 * (cos_theta))
                x2 = int(x0 - 1000 * (-sin_theta))
                y2 = int(y0 - 1000 * (cos_theta))
    
                line_points.append([[x1,y1,x2,y2]])
        return line_points
    
    
    def filter_lines(lines, min_distance):
        filtered_lines = []
    
        # filter out lines too close to each other
        # (this assumes lines are around the same size and parallel)
        # (extremely simplified to improve computational speed because this is all we need)
    
        if lines is not None:
            for line1 in lines:
                x1, y1, x2, y2 = line1[0]
                line1_x_avg = (x1 + x2) / 2
                line1_y_avg = (y1 + y2) / 2
                keep_line = True
                for line2 in filtered_lines:
                    x3, y3, x4, y4 = line2[0]
                    line2_x_avg = (x3 + x4) / 2
                    line2_y_avg = (y3 + y4) / 2
    
                    # calculate dist between average points of the 2 lines
                    dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2)
    
                    if dist < min_distance:
                        keep_line = False
                        break
    
                if keep_line:
                    filtered_lines.append(line1)
    
        vertical_lines, horizontal_lines = find_longest_lines(img)
    
        # create bitmasks for vert and horiz so we can get lines and intersections
        height, width, _ = img.shape
        vertical_mask = np.zeros((height, width), dtype=np.uint8)
        horizontal_mask = np.zeros((height, width), dtype=np.uint8)
    
        for line in vertical_lines:
            x1, y1, x2, y2 = line[0]
            cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2)
    
        for line in horizontal_lines:
            x1, y1, x2, y2 = line[0]
            cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
    
    
        # get lines and intersections of grid and corresponding contours
    
        intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
        board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
    
        contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
        if (show_cv):
            intersections, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
            # find midpoints of intersection contours (this gives us exact coordinates of the corners of the grid)
            intersection_points = []
            for contour in intersections:
                M = cv2.moments(contour)
                if (M["m00"] != 0):
                    midpoint_x = int(M["m10"] / M["m00"])
                    midpoint_y = int(M["m01"] / M["m00"])
                    intersection_points.append((midpoint_x, midpoint_y))
    
            # sort the coordinates from left to right then top to bottom
            sorted_intersection_points = sort_square_grid_coords(intersection_points, unpacked=False)
    
    
            board_lines_img = img.copy()
            cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2)
    
            i = 0
            for points in sorted_intersection_points:
                for point in points:
                    cv2.circle(board_lines_img, point, 5, (255 - (3 * i), (i % 9) * 28, 3 * i), -1)
                    i += 1
    
    zalonzo2's avatar
    zalonzo2 committed
            # cv2.imshow('Lines of Board', board_lines_img)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
            display_img([board_lines_img])
    
        if (len(vertical_lines) != 9 or len(horizontal_lines) != 9):
            print("Error: Grid does not match expected 9x9")
            print("# of Vertical:",len(vertical_lines))
            print("# of Horizontal:",len(horizontal_lines))
            return None, None
    
    
        # find largest contour and get rid of it because it contains weird edges from lines
        max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi)
        largest = -1
        # second_largest = -1
        # max_rect = None
        for i, contour in enumerate(contours):
            area = cv2.contourArea(contour)
            if area > max_area:
                max_area = area
                largest = i
        # "largest" is index of largest contour
    
        # get rid of contour containing the edges of the lines   
        contours = list(contours)
        contours.pop(largest)
        contours = tuple(contours)
    
        # thicken lines so that connections are made
        contour_mask = np.zeros((height, width), dtype=np.uint8)
        cv2.drawContours(contour_mask, contours, -1, (255), thickness=10)
        thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
        # obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it
        max_area = 100000
        largest = -1
        max_rect = None
        for i, contour in enumerate(thick_contours):
            area = cv2.contourArea(contour)
            if area > max_area:
                epsilon = 0.05 * cv2.arcLength(contour, True)
                rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill)
                if (len(rect) == 4):
                    max_area = area
                    largest = i
                    max_rect = rect
    
        # perspective transform based on rectangle outline of board
    
        corners = max_rect.reshape(-1, 2) # reshapes it so each row has 2 elements
        corners = [tuple(corner) for corner in corners] # convert to tuples
    
        corners_sorted = sort_square_grid_coords(corners, unpacked=True)
    
        tl = corners_sorted[0]
        tr = corners_sorted[1]
        bl = corners_sorted[2]
        br = corners_sorted[3]
    
        src = np.float32([list(tl), list(tr), list(bl), list(br)])
        dest = np.float32([[0,0], [width, 0], [0, height], [width, height]])
        M = cv2.getPerspectiveTransform(src, dest)
        Minv = cv2.getPerspectiveTransform(dest, src)
        warped_img = img.copy()
        warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height))
    
    
        # perspective transform the intersections as well
    
        M = cv2.getPerspectiveTransform(src, dest)
        Minv = cv2.getPerspectiveTransform(dest, src)
    
        warped_ip = intersection.copy() # warped intersection points
    
        warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
    
    
        warped_intersections, hierarchy = cv2.findContours(warped_ip, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
        # find midpoints of warped intersection contours (this gives us exact coordinates of the corners of the grid)
        warped_intersection_points = []
        for contour in warped_intersections:
    
            M = cv2.moments(contour)
            if (M["m00"] != 0):
                midpoint_x = int(M["m10"] / M["m00"])
                midpoint_y = int(M["m01"] / M["m00"])
    
                warped_intersection_points.append((midpoint_x, midpoint_y))
    
    
        # sort the coordinates from left to right then top to bottom
    
        sorted_warped_points = sort_square_grid_coords(warped_intersection_points, unpacked=False)
    
        if (show_cv):
            contours_img = img.copy()
            cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2)
            cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2)
            cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2)
    
                cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1)
    
    zalonzo2's avatar
    zalonzo2 committed
            # cv2.imshow('Contours', contours_img)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
            display_img([contours_img])
    
        return warped_img, sorted_warped_points
    
    def find_pieces(warped_img, sorted_warped_points):
    
        hsv_img = cv2.cvtColor(warped_img, cv2.COLOR_BGR2HSV)
    
    
        # threshold to find strongest colors in image
        hsv_mask_sat = cv2.inRange(hsv_img[:,:,1], 60, 255) # saturation mask
    
        hsv_mask_bright = cv2.inRange(hsv_img[:,:,2], 100, 255) # brightness mask
        hsv_mask = cv2.bitwise_and(hsv_mask_sat, hsv_mask_bright)
    
    
        hsv_after = cv2.bitwise_and(hsv_img, hsv_img, mask=hsv_mask)
    
        bgr_after = cv2.cvtColor(hsv_after, cv2.COLOR_HSV2BGR)
        
    
    zalonzo2's avatar
    zalonzo2 committed
        # define color thresholds to use to classify colors later on
    
        hue_thresh_dict = {'red': (170,190), 'orange':(8,20), 'yellow': (20,40), 'green': (50,70), 'blue': (105,120), 'purple': (120,140), 
                           'teal': (90,105), 'pink': (140,170)} 
    
        # loop through each square of chess board
    
        for i in range(0,8):
            color_grid.append([])
            for j in range(0,8):
    
                # establish corners of current square
                tl = sorted_warped_points[i][j]
                tr = sorted_warped_points[i][j+1]
                bl = sorted_warped_points[i+1][j]
                br = sorted_warped_points[i+1][j+1]
    
                # create a polygon mask for current grid square 
                # (this is because square is not always perfectly square so I can't just loop pixels from tl to tr then bl to br)
                # (this might not be worth the extra computation required to shave off a few pixels from being considered)
                height, width, _ = warped_img.shape
                rect_mask = np.zeros((height, width), dtype=np.uint8)
    
                poly = np.array([[tl, tr, br, bl]], dtype=np.int32)
    
    
                # loop through a perfect square that is slightly bigger than actual "square." obtain average hue of color in grid square
    
                for x in range(min(tl[0],bl[0]), max(tr[0],br[0])):
                    for y in range(min(tl[1],tr[1]), max(bl[1],br[1])):
    
                        if rect_mask[y,x] == 255 and hsv_after[y, x, 0] != 0:
    
                            num_pixels += 1
                            hue += hsv_after[y, x, 0]
                avg_hue = hue / num_pixels
    
    
                # if there is a color in square, then label based on custom hue thresholds and add to color_grid
    
                if avg_hue != 0:
                    for color, (lower, upper) in hue_thresh_dict.items():
    
                        if lower <= avg_hue < upper:
                            color_grid[i].append((color, avg_hue, num_pixels))
    
                            piece_found = True
                            break # should only do this once
                
                if piece_found == False:
    
                    color_grid[i].append((None, avg_hue, num_pixels))
    
        # print color_grid. only print when the color is found a lot in the square (> 100 times)
    
            for color, avg_hue, num_pixels in row:
                if num_pixels > 100:
                    print(color,int(avg_hue), "\t|", end="")
    
    zalonzo2's avatar
    zalonzo2 committed
            # cv2.imshow('Warped', warped_img)
    
            bgr_after_intersections = bgr_after.copy()
            for points in sorted_warped_points:
    
                        cv2.circle(bgr_after_intersections, point, 1, (255, 255, 255), -1)
    
    zalonzo2's avatar
    zalonzo2 committed
            display_img([warped_img, bgr_after_intersections])
            # cv2.imshow('hsv_after_intersections', bgr_after_intersections)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
    
    def sort_square_grid_coords(coordinates, unpacked):
    
        # this function assumes there are a perfect square amount of coordinates
    
        sqrt_len = int(math.sqrt(len(coordinates)))
        sorted_coords = sorted(coordinates, key=lambda coord: coord[1]) # first sort by y values
        # then group rows of the square (for example, 9x9 grid would be 81 coordinates so split into 9 arrays of 9)
    
        rows = [sorted_coords[i:i+sqrt_len] for i in range(0, len(sorted_coords), sqrt_len)]
        for row in rows:
            row.sort(key=lambda coord: coord[0]) # now sort each row by x
    
        if (unpacked == False):
    
        collapsed = [coord for row in rows for coord in row] # unpack/collapse groups to just be an array of tuples
        return collapsed