Skip to content
Snippets Groups Projects
mp0_p1.py 19.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Daniel Zhuang's avatar
    Daniel Zhuang committed
    from typing import Tuple, List 
    
    import numpy as np 
    from scipy.integrate import ode 
    
    from verse import BaseAgent, Scenario
    from verse.analysis.utils import wrap_to_pi 
    from verse.analysis.analysis_tree import TraceType, AnalysisTree 
    from verse.parser import ControllerIR
    from vehicle_controller import VehicleMode, PedestrianMode
    from verse.analysis import AnalysisTreeNode, AnalysisTree, AnalysisTreeNodeType
    
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
    from alive_progress import alive_bar
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
    import copy 
    
    refine_profile = {
        'R1': [0],
        'R2': [0,0,0,3],
        'R3': [0,0,0,3]
    }
    
    def tree_safe(tree: AnalysisTree):
        for node in tree.nodes:
            if node.assert_hits is not None:
                return False 
        return True
    
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
    def verify_refine(scenario: Scenario, time_horizon, time_step, refine_depth = 4
    ):
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
        init_car = scenario.init_dict['car']
        init_ped = scenario.init_dict['pedestrian']
        partition_depth = 0
        if init_ped[1][0] - init_ped[0][0]>0.1:
            exp = 'R3'
        elif init_car[1][3] - init_car[0][3] > 0.1:
            exp = 'R2'
        else:
            exp = 'R1'
        res_list = []
        init_queue = []
        if False:
            car_v_init_range = np.linspace(init_car[0][3], init_car[1][3], 5)
        else:
            car_v_init_range = [init_car[0][3], init_car[1][3]]
        if init_car[1][0]-init_car[0][0] > 0.1:
        # if False:
            car_x_init_range = np.linspace(init_car[0][0], init_car[1][0], 5)
        else:
            car_x_init_range = [init_car[0][0], init_car[1][0]]
        for i in range(len(car_x_init_range)-1):
            for j in range(len(car_v_init_range)-1):
                tmp = copy.deepcopy(init_car)
                tmp[0][0] = car_x_init_range[i]
                tmp[1][0] = car_x_init_range[i+1]
                tmp[0][3] = car_v_init_range[j]
                tmp[1][3] = car_v_init_range[j+1]
                init_queue.append((tmp, init_ped, partition_depth))
        # init_queue = [(init_car, init_ped, partition_depth)]
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
            
        total = 4*(2**(refine_depth))
        with alive_bar(total) as bar:
            while init_queue!=[] and partition_depth < refine_depth:
                car_init, ped_init, partition_depth = init_queue.pop(0)
                bar()
               
                print(f"######## Current Partition Depth: {partition_depth}, car x, {car_init[0][0]}, {car_init[1][0]}, car v, {car_init[0][3]}, {car_init[1][3]}, ped x, {ped_init[0][0]}, {ped_init[1][0]}, ped y, {ped_init[0][1]}, {ped_init[1][1]}")
                scenario.set_init_single('car', car_init, (VehicleMode.Normal,))
                scenario.set_init_single('pedestrian', ped_init, (PedestrianMode.Normal,))
                traces = scenario.verify(time_horizon, time_step)
                if not tree_safe(traces):
                    # Partition car and pedestrian initial state
                    idx = refine_profile[exp][partition_depth%len(refine_profile[exp])]
                    print(car_init[1][idx] - car_init[0][idx])
                    if car_init[1][idx] - car_init[0][idx] < 0.01:
                        print(f"Can't partition dim {idx} anymore. Scenario is likely unsafe")
                        res_list.append(traces)
                        return res_list
                        # if(exp == 'R2' or exp == 'R3'):
                        #     new_idx = 3 if idx ==0 else 0
                            
                        #     car_v_init = (car_init[0][new_idx] + car_init[1][new_idx])/2
    
    
                        #     car_init1 = copy.deepcopy(car_init)
                        #     car_init1[1][new_idx] = car_v_init
                        #     scenario.set_init_single('car', car_init1, (VehicleMode.Normal,))
                        #     scenario.set_init_single('pedestrian', ped_init, (PedestrianMode.Normal,))
                        #     traces = scenario.verify(time_horizon, time_step)
                            
                        #     if not tree_safe(traces):
                        #         if car_init1[1][new_idx] - car_init1[0][new_idx] < 0.01:
                        #             res_list.append(traces)
                        #             print('Can\'t partition anymore. Scenario is likely UNSAFE')
                        #             return res_list
                        #         else:
                        #             car_v_init1 = (car_init1[0][new_idx] + car_init1[1][new_idx])/2
                        #             car_init11 = copy.deepcopy(car_init1)
                        #             car_init11[1][new_idx] = car_v_init1
                        #             print("append:",car_init11  )
                        #             if partition_depth >= refine_depth:
                        #                 print('Max partition depth reached. Scenario may be unsafe')
                        #                 res_list.append(traces)
                        #                 return res_list
                                    
                        #             init_queue.append((car_init11, ped_init, partition_depth+1))
    
                        #     car_init2 = copy.deepcopy(car_init)
                        #     car_init2[0][new_idx] = car_v_init
    
                        #     scenario.set_init_single('car', car_init2, (VehicleMode.Normal,))
                        #     scenario.set_init_single('pedestrian', ped_init, (PedestrianMode.Normal,))
                        #     traces = scenario.verify(time_horizon, time_step)
                            
                        #     if not tree_safe(traces):
                        #         if car_init2[1][new_idx] - car_init2[0][new_idx] < 0.01:
                        #             res_list.append(traces)
                        #             print('Can\'t partition anymore. Scenario is likely UNSAFE')
                        #             return res_list
                        #         else:
                        #             car_v_init2 = (car_init2[0][new_idx] + car_init2[1][new_idx])/2
                        #             car_init21 = copy.deepcopy(car_init2)
                        #             car_init21[1][new_idx] = car_v_init2
                                    
                        #             if partition_depth >= refine_depth:
                        #                 print('Max partition depth reached. Scenario may be unsafe')
                        #                 res_list.append(traces)
                        #                 return res_list
    
                        #             init_queue.append((car_init21, ped_init, partition_depth+1))    
    
                        # else:
                        #     res_list.append(traces)
                        #     print('Can\'t partition anymore. Scenario is likely UNSAFE')
                        #     return res_list
    
                        #init_queue.append((car_init, ped_init, partition_depth+1))
                        #continue
                    elif partition_depth >= refine_depth:
                        print('Max partition depth reached. Scenario may be unsafe')
                        res_list.append(traces)
                        return res_list
    
                    car_v_init = (car_init[0][idx] + car_init[1][idx])/2
                    car_init1 = copy.deepcopy(car_init)
                    car_init1[1][idx] = car_v_init 
                    init_queue.append((car_init1, ped_init, partition_depth+1))
                    car_init2 = copy.deepcopy(car_init)
                    car_init2[0][idx] = car_v_init 
                    init_queue.append((car_init2, ped_init, partition_depth+1))
                else:
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
                    res_list.append(traces)
        # com_traces = combine_tree(res_list)
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
        print("Scenario is SAFE")
    
    Daniel Zhuang's avatar
    Daniel Zhuang committed
        return res_list
    
    class PedestrianAgent(BaseAgent):
        def __init__(
            self, 
            id, 
        ):
            self.decision_logic: ControllerIR = ControllerIR.empty()
            self.id = id 
    
        @staticmethod
        def dynamic(t, state):
            x, y, theta, v = state
            x_dot = 0
            y_dot = v
            theta_dot = 0
            v_dot = 0
            return [x_dot, y_dot, theta_dot, v_dot]    
    
        def TC_simulate(
            self, mode: List[str], init, time_bound, time_step, lane_map = None
        ) -> TraceType:
            time_bound = float(time_bound)
            num_points = int(np.ceil(time_bound / time_step))
            trace = np.zeros((num_points + 1, 1 + len(init)))
            trace[1:, 0] = [round(i * time_step, 10) for i in range(num_points)]
            trace[0, 1:] = init
            for i in range(num_points):
                r = ode(self.dynamic)
                r.set_initial_value(init)
                res: np.ndarray = r.integrate(r.t + time_step)
                init = res.flatten()
                if init[3] < 0:
                    init[3] = 0
                trace[i + 1, 0] = time_step * (i + 1)
                trace[i + 1, 1:] = init
            return trace
    
    class VehicleAgent(BaseAgent):
        def __init__(
            self, 
            id, 
            code = None,
            file_name = None, 
            accel_brake = 5,
            accel_notbrake = 5,
            accel_hardbrake = 20,
            speed = 10
        ):
            super().__init__(
                id, code, file_name
            )
            self.accel_brake = accel_brake
            self.accel_notbrake = accel_notbrake
            self.accel_hardbrake = accel_hardbrake
            self.speed = speed
            self.vmax = 20
             
        @staticmethod
        def dynamic(t, state, u):
            x, y, theta, v = state
            delta, a = u
            x_dot = v * np.cos(theta + delta)
            y_dot = v * np.sin(theta + delta)
            theta_dot = v / 1.75 * np.sin(delta)
            v_dot = a
            return [x_dot, y_dot, theta_dot, v_dot]
        
        def action_handler(self, mode: List[str], state) -> Tuple[float, float]:
            x, y, theta, v = state
            vehicle_mode,  = mode
            vehicle_pos = np.array([x, y])
            a = 0
            lane_width = 3
            d = -y
            if vehicle_mode == "Normal" or vehicle_mode == "Stop":
                pass
            elif vehicle_mode == "SwitchLeft":
                d += lane_width
            elif vehicle_mode == "SwitchRight":
                d -= lane_width
            elif vehicle_mode == "Brake":
                a = max(-self.accel_brake, -v)
                # a = -50
            elif vehicle_mode == "HardBrake":
                a = max(-self.accel_hardbrake, -v)
                # a = -50
            elif vehicle_mode == "Accel":
                a = min(self.accel_notbrake, self.speed-v)
            else:
                raise ValueError(f"Invalid mode: {vehicle_mode}")
    
            heading = 0
            psi = wrap_to_pi(heading - theta)
            steering = psi + np.arctan2(0.45 * d, v)
            steering = np.clip(steering, -0.61, 0.61)
            return steering, a
    
        def TC_simulate(
            self, mode: List[str], init, time_bound, time_step, lane_map = None
        ) -> TraceType:
            time_bound = float(time_bound)
            num_points = int(np.ceil(time_bound / time_step))
            trace = np.zeros((num_points + 1, 1 + len(init)))
            trace[1:, 0] = [round(i * time_step, 10) for i in range(num_points)]
            trace[0, 1:] = init
            for i in range(num_points):
                steering, a = self.action_handler(mode, init)
                r = ode(self.dynamic)
                r.set_initial_value(init).set_f_params([steering, a])
                res: np.ndarray = r.integrate(r.t + time_step)
                init = res.flatten()
                if init[3] < 0:
                    init[3] = 0
                trace[i + 1, 0] = time_step * (i + 1)
                trace[i + 1, 1:] = init
            return trace
    
    def dist(pnt1, pnt2):
        return np.linalg.norm(
            np.array(pnt1) - np.array(pnt2)
        )
    
    def get_extreme(rect1, rect2):
        lb11 = rect1[0]
        lb12 = rect1[1]
        ub11 = rect1[2]
        ub12 = rect1[3]
    
        lb21 = rect2[0]
        lb22 = rect2[1]
        ub21 = rect2[2]
        ub22 = rect2[3]
    
        # Using rect 2 as reference
        left = lb21 > ub11 
        right = ub21 < lb11 
        bottom = lb22 > ub12
        top = ub22 < lb12
    
        if top and left: 
            dist_min = dist((ub11, lb12),(lb21, ub22))
            dist_max = dist((lb11, ub12),(ub21, lb22))
        elif bottom and left:
            dist_min = dist((ub11, ub12),(lb21, lb22))
            dist_max = dist((lb11, lb12),(ub21, ub22))
        elif top and right:
            dist_min = dist((lb11, lb12), (ub21, ub22))
            dist_max = dist((ub11, ub12), (lb21, lb22))
        elif bottom and right:
            dist_min = dist((lb11, ub12),(ub21, lb22))
            dist_max = dist((ub11, lb12),(lb21, ub22))
        elif left:
            dist_min = lb21 - ub11 
            dist_max = np.sqrt((lb21 - ub11)**2 + max((ub22-lb12)**2, (ub12-lb22)**2))
        elif right: 
            dist_min = lb11 - ub21 
            dist_max = np.sqrt((lb21 - ub11)**2 + max((ub22-lb12)**2, (ub12-lb22)**2))
        elif top: 
            dist_min = lb12 - ub22
            dist_max = np.sqrt((ub12 - lb22)**2 + max((ub21-lb11)**2, (ub11-lb21)**2))
        elif bottom: 
            dist_min = lb22 - ub12 
            dist_max = np.sqrt((ub22 - lb12)**2 + max((ub21-lb11)**2, (ub11-lb21)**2)) 
        else: 
            dist_min = 0 
            dist_max = max(
                dist((lb11, lb12), (ub21, ub22)),
                dist((lb11, ub12), (ub21, lb22)),
                dist((ub11, lb12), (lb21, ub12)),
                dist((ub11, ub12), (lb21, lb22))
            )
        return dist_min, dist_max
    
    class VehiclePedestrianSensor:
        def __init__(self):
            self.sensor_distance = 60
    
        # The baseline sensor is omniscient. Each agent can get the state of all other agents
        def sense(self, agent: BaseAgent, state_dict, lane_map):
            len_dict = {}
            cont = {}
            disc = {}
            len_dict = {"others": len(state_dict) - 1}
            tmp = np.array(list(state_dict.values())[0][0])
            if tmp.ndim < 2:
                if agent.id == 'car':
                    len_dict['others'] = 1 
                    cont['ego.x'] = state_dict['car'][0][1]
                    cont['ego.y'] = state_dict['car'][0][2]
                    cont['ego.theta'] = state_dict['car'][0][3]
                    cont['ego.v'] = state_dict['car'][0][4]
                    disc['ego.agent_mode'] = state_dict['car'][1][0]
                    dist = np.sqrt(
                        (state_dict['car'][0][1]-state_dict['pedestrian'][0][1])**2+\
                        (state_dict['car'][0][2]-state_dict['pedestrian'][0][2])**2
                    )
                    # cont['ego.dist'] = dist
                    if dist < self.sensor_distance:
                        cont['other.dist'] = dist
                        # cont['other.x'] = state_dict['pedestrian'][0][1]
                        # cont['other.y'] = state_dict['pedestrian'][0][2]
                        # cont['other.v'] = state_dict['pedestrian'][0][4]
                    else:
                        cont['other.dist'] = 1000
                        # cont['other.x'] = 1000
                        # cont['other.y'] = 1000
                        # cont['other.v'] = 1000
            else:
                if agent.id == 'car':
                    len_dict['others'] = 1 
                    dist_min, dist_max = get_extreme(
                        (state_dict['car'][0][0][1],state_dict['car'][0][0][2],state_dict['car'][0][1][1],state_dict['car'][0][1][2]),
                        (state_dict['pedestrian'][0][0][1],state_dict['pedestrian'][0][0][2],state_dict['pedestrian'][0][1][1],state_dict['pedestrian'][0][1][2]),
                    )
                    cont['ego.x'] = [
                        state_dict['car'][0][0][1], state_dict['car'][0][1][1]
                    ]
                    cont['ego.y'] = [
                        state_dict['car'][0][0][2], state_dict['car'][0][1][2]
                    ]
                    cont['ego.theta'] = [
                        state_dict['car'][0][0][3], state_dict['car'][0][1][3]
                    ]
                    cont['ego.v'] = [
                        state_dict['car'][0][0][4], state_dict['car'][0][1][4]
                    ]
                    cont['other.dist'] = [
                        dist_min, dist_max
                    ]
                    disc['ego.agent_mode'] = state_dict['car'][1][0]
                    if dist_min<self.sensor_distance:
                        cont['other.dist'] = [
                            dist_min, dist_max
                        ]
                        # cont['other.x'] = [
                        #     state_dict['pedestrian'][0][0][1], state_dict['pedestrian'][0][1][1]
                        # ]
                        # cont['other.y'] = [
                        #     state_dict['pedestrian'][0][0][2], state_dict['pedestrian'][0][1][2]
                        # ]
                        # cont['other.v'] = [
                        #     state_dict['pedestrian'][0][0][4], state_dict['pedestrian'][0][1][4]
                        # ]
                    else:
                        cont['other.dist'] = [
                            1000, 1000
                        ]
                        # cont['other.x'] = [
                        #     1000, 1000
                        # ]
                        # cont['other.y'] = [
                        #     1000, 1000
                        # ]
                        # cont['other.v'] = [
                        #     1000, 1000
                        # ]
    
    
            return cont, disc, len_dict
    
    def sample_init(scenario: Scenario, num_sample=50):
        """
        TODO:   given the initial set,
                generate multiple initial points located in the initial set
                as the input of multiple simulation.
                note that output should be formatted correctly and every point should be in inital set.
                refer the following sample code to write your code. 
        """
        init_dict = scenario.init_dict
        print(init_dict)
        ############## Your Code Start Here ##############
        sample_dict_list = []
    
        np.random.seed(2023)
        for i in range(num_sample):
            sample_dict={}
            for agent in init_dict:
                point = np.random.uniform(init_dict[agent][0], init_dict[agent][1]).tolist()
                sample_dict[agent] = point
            sample_dict_list.append(sample_dict)
        ############## Your Code End Here ##############
        print(sample_dict_list)
    
        return sample_dict_list
    
    def eval_velocity(tree_list: List[AnalysisTree]):
        agent_id = 'car'
        velo_list = []
        unsafe_init = []
        for tree in tree_list:
            assert agent_id in tree.root.init
            leaves = list(filter(lambda node: node.child == [], tree.nodes))
            unsafe = list(filter(lambda node: node.assert_hits != None, leaves))
            if len(unsafe) != 0:
                print(f"unsafety detected in tree with init {tree.root.init}")
                unsafe_init.append(tree.root.init)
            else:
                safe = np.array(list(filter(lambda node: node.assert_hits == None, leaves)))
                init_x = tree.root.init[agent_id][0]
                last_xs = np.array([node.trace[agent_id][-1][1] for node in safe])
                time = round(safe[0].trace[agent_id][-1][0], 3)
                velos = (last_xs-init_x)/time
                max_velo = np.max(velos)
                velo_list.append(max_velo)
                print(f"Max avg velocity {max_velo} in tree with init {tree.root.init}")
        if len(tree_list) == len(velo_list):
            print(f"No unsafety detected! Overall average velocity is {sum(velo_list)/len(velo_list)}.")
            return {sum(velo_list)/len(velo_list)}, 0, []
        else:
            print(f"Unsafety detected! Please update your DL.")
            return None, float(len(unsafe_init))/float(len(tree_list)), unsafe_init
    
    def combine_tree(tree_list: List[AnalysisTree]):
        combined_trace={}
        for tree in tree_list:
            for node in tree.nodes:
                for agent_id in node.agent:
                    traces = node.trace
                    trace = np.array(traces[agent_id])
                    if agent_id not in combined_trace:
                        combined_trace[agent_id]={}
                    for i in range (0, len(trace), 2):
                        step = round(trace[i][0], 3)
                        if step not in combined_trace[agent_id]:
                            combined_trace[agent_id][step]=[trace[i], trace[i+1]]
                        else:
                            lower = np.min([combined_trace[agent_id][step][0],trace[i]], 0)
                            upper = np.max([combined_trace[agent_id][step][1],trace[i+1]], 0)
                            combined_trace[agent_id][step]=[lower, upper]
    
        final_trace = {agent_id:np.array(list(combined_trace[agent_id].values())).flatten().reshape((-1, trace[i].size)).tolist() for agent_id in combined_trace}
        root = AnalysisTreeNode(final_trace,None,tree_list[0].root.mode,None,None, node.agent, None,None,[],0,10,AnalysisTreeNodeType.REACH_TUBE,0)
        return AnalysisTree(root)