Skip to content
Snippets Groups Projects
mp0_p1.py 15.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Daniel Zhuang's avatar
    Daniel Zhuang committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    from typing import Tuple, List 
    
    import numpy as np 
    from scipy.integrate import ode 
    
    from verse import BaseAgent, Scenario
    from verse.analysis.utils import wrap_to_pi 
    from verse.analysis.analysis_tree import TraceType, AnalysisTree 
    from verse.parser import ControllerIR
    from vehicle_controller import VehicleMode, PedestrianMode
    from verse.analysis import AnalysisTreeNode, AnalysisTree, AnalysisTreeNodeType
    
    import copy 
    
    refine_profile = {
        'R1': [0],
        'R2': [0,0,0,3],
        'R3': [0,0,0,3]
    }
    
    def tree_safe(tree: AnalysisTree):
        for node in tree.nodes:
            if node.assert_hits is not None:
                return False 
        return True
    
    def verify_refine(scenario: Scenario, time_horizon, time_step):
        refine_depth = 5
        init_car = scenario.init_dict['car']
        init_ped = scenario.init_dict['pedestrian']
        partition_depth = 0
        if init_ped[1][0] - init_ped[0][0]>0.1:
            exp = 'R3'
        elif init_car[1][3] - init_car[0][3] > 0.1:
            exp = 'R2'
        else:
            exp = 'R1'
        res_list = []
        init_queue = []
        if False:
            car_v_init_range = np.linspace(init_car[0][3], init_car[1][3], 5)
        else:
            car_v_init_range = [init_car[0][3], init_car[1][3]]
        if init_car[1][0]-init_car[0][0] > 0.1:
        # if False:
            car_x_init_range = np.linspace(init_car[0][0], init_car[1][0], 5)
        else:
            car_x_init_range = [init_car[0][0], init_car[1][0]]
        for i in range(len(car_x_init_range)-1):
            for j in range(len(car_v_init_range)-1):
                tmp = copy.deepcopy(init_car)
                tmp[0][0] = car_x_init_range[i]
                tmp[1][0] = car_x_init_range[i+1]
                tmp[0][3] = car_v_init_range[j]
                tmp[1][3] = car_v_init_range[j+1]
                init_queue.append((tmp, init_ped, partition_depth))
        # init_queue = [(init_car, init_ped, partition_depth)]
        while init_queue!=[] and partition_depth < refine_depth:
            car_init, ped_init, partition_depth = init_queue.pop(0)
            print(f"######## {partition_depth}, car x, {car_init[0][0]}, {car_init[1][0]}, car v, {car_init[0][3]}, {car_init[1][3]}, ped x, {ped_init[0][0]}, {ped_init[1][0]}, ped y, {ped_init[0][1]}, {ped_init[1][1]}")
            scenario.set_init_single('car', car_init, (VehicleMode.Normal,))
            scenario.set_init_single('pedestrian', ped_init, (PedestrianMode.Normal,))
            traces = scenario.verify(time_horizon, time_step, max_height=6)
            if not tree_safe(traces):
                # Partition car and pedestrian initial state
                idx = refine_profile[exp][partition_depth%len(refine_profile[exp])]
                if car_init[1][idx] - car_init[0][idx] < 0.01:
                    print(f"Stop refine car state {idx}")
                    init_queue.append((car_init, ped_init, partition_depth+1))
                elif partition_depth >= refine_depth:
                    print('Threshold Reached. Scenario is UNSAFE.')
                    res_list.append(traces)
                    break
                car_v_init = (car_init[0][idx] + car_init[1][idx])/2
                car_init1 = copy.deepcopy(car_init)
                car_init1[1][idx] = car_v_init 
                init_queue.append((car_init1, ped_init, partition_depth+1))
                car_init2 = copy.deepcopy(car_init)
                car_init2[0][idx] = car_v_init 
                init_queue.append((car_init2, ped_init, partition_depth+1))
            else:
                res_list.append(traces)
        # com_traces = combine_tree(res_list)
        
        return res_list
    
    class PedestrianAgent(BaseAgent):
        def __init__(
            self, 
            id, 
        ):
            self.decision_logic: ControllerIR = ControllerIR.empty()
            self.id = id 
    
        @staticmethod
        def dynamic(t, state):
            x, y, theta, v = state
            x_dot = 0
            y_dot = v
            theta_dot = 0
            v_dot = 0
            return [x_dot, y_dot, theta_dot, v_dot]    
    
        def TC_simulate(
            self, mode: List[str], init, time_bound, time_step, lane_map = None
        ) -> TraceType:
            time_bound = float(time_bound)
            num_points = int(np.ceil(time_bound / time_step))
            trace = np.zeros((num_points + 1, 1 + len(init)))
            trace[1:, 0] = [round(i * time_step, 10) for i in range(num_points)]
            trace[0, 1:] = init
            for i in range(num_points):
                r = ode(self.dynamic)
                r.set_initial_value(init)
                res: np.ndarray = r.integrate(r.t + time_step)
                init = res.flatten()
                if init[3] < 0:
                    init[3] = 0
                trace[i + 1, 0] = time_step * (i + 1)
                trace[i + 1, 1:] = init
            return trace
    
    class VehicleAgent(BaseAgent):
        def __init__(
            self, 
            id, 
            code = None,
            file_name = None, 
            accel_brake = 5,
            accel_notbrake = 5,
            accel_hardbrake = 20,
            speed = 10
        ):
            super().__init__(
                id, code, file_name
            )
            self.accel_brake = accel_brake
            self.accel_notbrake = accel_notbrake
            self.accel_hardbrake = accel_hardbrake
            self.speed = speed
            self.vmax = 20
             
        @staticmethod
        def dynamic(t, state, u):
            x, y, theta, v = state
            delta, a = u
            x_dot = v * np.cos(theta + delta)
            y_dot = v * np.sin(theta + delta)
            theta_dot = v / 1.75 * np.sin(delta)
            v_dot = a
            return [x_dot, y_dot, theta_dot, v_dot]
        
        def action_handler(self, mode: List[str], state) -> Tuple[float, float]:
            x, y, theta, v = state
            vehicle_mode,  = mode
            vehicle_pos = np.array([x, y])
            a = 0
            lane_width = 3
            d = -y
            if vehicle_mode == "Normal" or vehicle_mode == "Stop":
                pass
            elif vehicle_mode == "SwitchLeft":
                d += lane_width
            elif vehicle_mode == "SwitchRight":
                d -= lane_width
            elif vehicle_mode == "Brake":
                a = max(-self.accel_brake, -v)
                # a = -50
            elif vehicle_mode == "HardBrake":
                a = max(-self.accel_hardbrake, -v)
                # a = -50
            elif vehicle_mode == "Accel":
                a = min(self.accel_notbrake, self.speed-v)
            else:
                raise ValueError(f"Invalid mode: {vehicle_mode}")
    
            heading = 0
            psi = wrap_to_pi(heading - theta)
            steering = psi + np.arctan2(0.45 * d, v)
            steering = np.clip(steering, -0.61, 0.61)
            return steering, a
    
        def TC_simulate(
            self, mode: List[str], init, time_bound, time_step, lane_map = None
        ) -> TraceType:
            time_bound = float(time_bound)
            num_points = int(np.ceil(time_bound / time_step))
            trace = np.zeros((num_points + 1, 1 + len(init)))
            trace[1:, 0] = [round(i * time_step, 10) for i in range(num_points)]
            trace[0, 1:] = init
            for i in range(num_points):
                steering, a = self.action_handler(mode, init)
                r = ode(self.dynamic)
                r.set_initial_value(init).set_f_params([steering, a])
                res: np.ndarray = r.integrate(r.t + time_step)
                init = res.flatten()
                if init[3] < 0:
                    init[3] = 0
                trace[i + 1, 0] = time_step * (i + 1)
                trace[i + 1, 1:] = init
            return trace
    
    def dist(pnt1, pnt2):
        return np.linalg.norm(
            np.array(pnt1) - np.array(pnt2)
        )
    
    def get_extreme(rect1, rect2):
        lb11 = rect1[0]
        lb12 = rect1[1]
        ub11 = rect1[2]
        ub12 = rect1[3]
    
        lb21 = rect2[0]
        lb22 = rect2[1]
        ub21 = rect2[2]
        ub22 = rect2[3]
    
        # Using rect 2 as reference
        left = lb21 > ub11 
        right = ub21 < lb11 
        bottom = lb22 > ub12
        top = ub22 < lb12
    
        if top and left: 
            dist_min = dist((ub11, lb12),(lb21, ub22))
            dist_max = dist((lb11, ub12),(ub21, lb22))
        elif bottom and left:
            dist_min = dist((ub11, ub12),(lb21, lb22))
            dist_max = dist((lb11, lb12),(ub21, ub22))
        elif top and right:
            dist_min = dist((lb11, lb12), (ub21, ub22))
            dist_max = dist((ub11, ub12), (lb21, lb22))
        elif bottom and right:
            dist_min = dist((lb11, ub12),(ub21, lb22))
            dist_max = dist((ub11, lb12),(lb21, ub22))
        elif left:
            dist_min = lb21 - ub11 
            dist_max = np.sqrt((lb21 - ub11)**2 + max((ub22-lb12)**2, (ub12-lb22)**2))
        elif right: 
            dist_min = lb11 - ub21 
            dist_max = np.sqrt((lb21 - ub11)**2 + max((ub22-lb12)**2, (ub12-lb22)**2))
        elif top: 
            dist_min = lb12 - ub22
            dist_max = np.sqrt((ub12 - lb22)**2 + max((ub21-lb11)**2, (ub11-lb21)**2))
        elif bottom: 
            dist_min = lb22 - ub12 
            dist_max = np.sqrt((ub22 - lb12)**2 + max((ub21-lb11)**2, (ub11-lb21)**2)) 
        else: 
            dist_min = 0 
            dist_max = max(
                dist((lb11, lb12), (ub21, ub22)),
                dist((lb11, ub12), (ub21, lb22)),
                dist((ub11, lb12), (lb21, ub12)),
                dist((ub11, ub12), (lb21, lb22))
            )
        return dist_min, dist_max
    
    class VehiclePedestrianSensor:
        def __init__(self):
            self.sensor_distance = 60
    
        # The baseline sensor is omniscient. Each agent can get the state of all other agents
        def sense(self, agent: BaseAgent, state_dict, lane_map):
            len_dict = {}
            cont = {}
            disc = {}
            len_dict = {"others": len(state_dict) - 1}
            tmp = np.array(list(state_dict.values())[0][0])
            if tmp.ndim < 2:
                if agent.id == 'car':
                    len_dict['others'] = 1 
                    cont['ego.x'] = state_dict['car'][0][1]
                    cont['ego.y'] = state_dict['car'][0][2]
                    cont['ego.theta'] = state_dict['car'][0][3]
                    cont['ego.v'] = state_dict['car'][0][4]
                    disc['ego.agent_mode'] = state_dict['car'][1][0]
                    dist = np.sqrt(
                        (state_dict['car'][0][1]-state_dict['pedestrian'][0][1])**2+\
                        (state_dict['car'][0][2]-state_dict['pedestrian'][0][2])**2
                    )
                    # cont['ego.dist'] = dist
                    if dist < self.sensor_distance:
                        cont['other.dist'] = dist
                        # cont['other.x'] = state_dict['pedestrian'][0][1]
                        # cont['other.y'] = state_dict['pedestrian'][0][2]
                        # cont['other.v'] = state_dict['pedestrian'][0][4]
                    else:
                        cont['other.dist'] = 1000
                        # cont['other.x'] = 1000
                        # cont['other.y'] = 1000
                        # cont['other.v'] = 1000
            else:
                if agent.id == 'car':
                    len_dict['others'] = 1 
                    dist_min, dist_max = get_extreme(
                        (state_dict['car'][0][0][1],state_dict['car'][0][0][2],state_dict['car'][0][1][1],state_dict['car'][0][1][2]),
                        (state_dict['pedestrian'][0][0][1],state_dict['pedestrian'][0][0][2],state_dict['pedestrian'][0][1][1],state_dict['pedestrian'][0][1][2]),
                    )
                    cont['ego.x'] = [
                        state_dict['car'][0][0][1], state_dict['car'][0][1][1]
                    ]
                    cont['ego.y'] = [
                        state_dict['car'][0][0][2], state_dict['car'][0][1][2]
                    ]
                    cont['ego.theta'] = [
                        state_dict['car'][0][0][3], state_dict['car'][0][1][3]
                    ]
                    cont['ego.v'] = [
                        state_dict['car'][0][0][4], state_dict['car'][0][1][4]
                    ]
                    cont['other.dist'] = [
                        dist_min, dist_max
                    ]
                    disc['ego.agent_mode'] = state_dict['car'][1][0]
                    if dist_min<self.sensor_distance:
                        cont['other.dist'] = [
                            dist_min, dist_max
                        ]
                        # cont['other.x'] = [
                        #     state_dict['pedestrian'][0][0][1], state_dict['pedestrian'][0][1][1]
                        # ]
                        # cont['other.y'] = [
                        #     state_dict['pedestrian'][0][0][2], state_dict['pedestrian'][0][1][2]
                        # ]
                        # cont['other.v'] = [
                        #     state_dict['pedestrian'][0][0][4], state_dict['pedestrian'][0][1][4]
                        # ]
                    else:
                        cont['other.dist'] = [
                            1000, 1000
                        ]
                        # cont['other.x'] = [
                        #     1000, 1000
                        # ]
                        # cont['other.y'] = [
                        #     1000, 1000
                        # ]
                        # cont['other.v'] = [
                        #     1000, 1000
                        # ]
    
    
            return cont, disc, len_dict
    
    def sample_init(scenario: Scenario, num_sample=50):
        """
        TODO:   given the initial set,
                generate multiple initial points located in the initial set
                as the input of multiple simulation.
                note that output should be formatted correctly and every point should be in inital set.
                refer the following sample code to write your code. 
        """
        init_dict = scenario.init_dict
        print(init_dict)
        ############## Your Code Start Here ##############
        sample_dict_list = []
    
        np.random.seed(2023)
        for i in range(num_sample):
            sample_dict={}
            for agent in init_dict:
                point = np.random.uniform(init_dict[agent][0], init_dict[agent][1]).tolist()
                sample_dict[agent] = point
            sample_dict_list.append(sample_dict)
        ############## Your Code End Here ##############
        print(sample_dict_list)
    
        return sample_dict_list
    
    def eval_velocity(tree_list: List[AnalysisTree]):
        agent_id = 'car'
        velo_list = []
        unsafe_init = []
        for tree in tree_list:
            assert agent_id in tree.root.init
            leaves = list(filter(lambda node: node.child == [], tree.nodes))
            unsafe = list(filter(lambda node: node.assert_hits != None, leaves))
            if len(unsafe) != 0:
                print(f"unsafety detected in tree with init {tree.root.init}")
                unsafe_init.append(tree.root.init)
            else:
                safe = np.array(list(filter(lambda node: node.assert_hits == None, leaves)))
                init_x = tree.root.init[agent_id][0]
                last_xs = np.array([node.trace[agent_id][-1][1] for node in safe])
                time = round(safe[0].trace[agent_id][-1][0], 3)
                velos = (last_xs-init_x)/time
                max_velo = np.max(velos)
                velo_list.append(max_velo)
                print(f"Max avg velocity {max_velo} in tree with init {tree.root.init}")
        if len(tree_list) == len(velo_list):
            print(f"No unsafety detected! Overall average velocity is {sum(velo_list)/len(velo_list)}.")
            return {sum(velo_list)/len(velo_list)}, 0, []
        else:
            print(f"Unsafety detected! Please update your DL.")
            return None, float(len(unsafe_init))/float(len(tree_list)), unsafe_init
    
    def combine_tree(tree_list: List[AnalysisTree]):
        combined_trace={}
        for tree in tree_list:
            for node in tree.nodes:
                for agent_id in node.agent:
                    traces = node.trace
                    trace = np.array(traces[agent_id])
                    if agent_id not in combined_trace:
                        combined_trace[agent_id]={}
                    for i in range (0, len(trace), 2):
                        step = round(trace[i][0], 3)
                        if step not in combined_trace[agent_id]:
                            combined_trace[agent_id][step]=[trace[i], trace[i+1]]
                        else:
                            lower = np.min([combined_trace[agent_id][step][0],trace[i]], 0)
                            upper = np.max([combined_trace[agent_id][step][1],trace[i+1]], 0)
                            combined_trace[agent_id][step]=[lower, upper]
    
        final_trace = {agent_id:np.array(list(combined_trace[agent_id].values())).flatten().reshape((-1, trace[i].size)).tolist() for agent_id in combined_trace}
        root = AnalysisTreeNode(final_trace,None,tree_list[0].root.mode,None,None, node.agent, None,None,[],0,10,AnalysisTreeNodeType.REACH_TUBE,0)
        return AnalysisTree(root)