Skip to content
Snippets Groups Projects
Commit 5d6c4129 authored by Shyam Upadhyay's avatar Shyam Upadhyay
Browse files

wip

parent 08552c8d
No related branches found
No related tags found
No related merge requests found
......@@ -12,6 +12,7 @@ MAIN="$PACKAGE_PREFIX.nytlabs.corpus.ACEEvents"
MAIN="$PACKAGE_PREFIX.nytlabs.corpus.core.NYTAnnotations"
MAIN="$PACKAGE_PREFIX.salience.learning.Main"
MAIN="$PACKAGE_PREFIX.readers.LazyNYTReader"
MAIN="$PACKAGE_PREFIX.features.MyTrainer"
#MAIN="$PACKAGE_PREFIX.nytlabs.corpus.core.Evaluator"
#MAIN="$PACKAGE_PREFIX.features.AllFeatures"
......
......@@ -45,20 +45,20 @@ public class MyTrainer {
NoisyLabeler trainReader = new NoisyLabeler(d1);
NoisyLabeler testReader = new NoisyLabeler(d2);
// NoisySupervisionReader trainReader = new NoisySupervisionReader(new NoisyLabeler(d1), true);
// NoisySupervisionReader testReader = new NoisySupervisionReader(new NoisyLabeler(d2), false);
FlatReader f1 = new FlatReader(new NoisyLabeler(d1), true);
FlatReader f2 = new FlatReader(new NoisyLabeler(d2), false);
getDist(trainReader);
getDist(testReader);
trainReader.reset();
testReader.reset();
getDist(trainReader);
getDist(testReader);
// getDist(trainReader);
// getDist(testReader);
// trainReader.reset();
// testReader.reset();
// getDist(trainReader);
// getDist(testReader);
// MyClassifier learner = new MyClassifier();
// BatchTrainer trainer = new BatchTrainer(learner, trainReader);
// trainer.train(1);
MyClassifier learner = new MyClassifier();
BatchTrainer trainer = new BatchTrainer(learner, trainReader);
trainer.train(1);
// getFeatureWeights(learner);
......@@ -74,13 +74,14 @@ public class MyTrainer {
// LazyNYTReader goldReader = new LazyNYTReader(cc, alreadyCached, docs);
// NoisySupervisionReader gold= new NoisySupervisionReader(goldReader);
// trainReader.reset();
// testReader.reset();
trainReader.reset();
testReader.reset();
f1.reset();
f2.reset();
// on train data
// test(learner, new AllFeatures(), trainReader);
test(learner, new AllFeatures(), f1);
// on test data
// test(learner, new AllFeatures(), testReader);
test(learner, new AllFeatures(), f2);
// LazyNYTReader.main();
}
......@@ -144,23 +145,23 @@ public class MyTrainer {
System.out.println("Dist: pos-"+pos+" neg-"+neg);
}
// public static void test(MyClassifier learner, AllFeatures feat, NoisySupervisionReader gold){
// MyClassifier c = new MyClassifier();
//
//// SparseNetworkLearner.Parameters params = new SparseNetworkLearner.Parameters();
//// c.setParameters(params);
//
// TestDiscrete.testDiscrete(new TestDiscrete(), c, new MyLabel(), gold, true, 1000);
//
//// EventInstance inst= (EventInstance) gold.next();
//// while(inst!=null) {
//// FeatureVector f = feat.classify(inst);
//// System.out.println(f.featuresSize());
//// String ans = learner.discreteValue(f);
//// ScoreSet ss = learner.scores(inst);
//// System.out.println(ss.values()+" "+ans);
//// inst= (EventInstance) gold.next();
//// }
// }
public static void test(MyClassifier learner, AllFeatures feat, FlatReader gold){
MyClassifier c = new MyClassifier();
// SparseNetworkLearner.Parameters params = new SparseNetworkLearner.Parameters();
// c.setParameters(params);
TestDiscrete.testDiscrete(new TestDiscrete(), c, new MyLabel(), gold, true, 1000);
// EventInstance inst= (EventInstance) gold.next();
// while(inst!=null) {
// FeatureVector f = feat.classify(inst);
// System.out.println(f.featuresSize());
// String ans = learner.discreteValue(f);
// ScoreSet ss = learner.scores(inst);
// System.out.println(ss.values()+" "+ans);
// inst= (EventInstance) gold.next();
// }
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment