Newer
Older
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"CUDA Error: %s %s %d\n", cudaGetErrorString(code), __FILE__, line);
if (abort) exit(code);
}
}
Configuration::Configuration(const char* config_file, int simNum, bool debug) :
simNum(simNum) {
// Read the parameters.
type_d = NULL;
kTGrid_d = NULL;
bonds_d = NULL;
bondMap_d = NULL;
excludes_d = NULL;
excludeMap_d = NULL;
angles_d = NULL;
dihedrals_d = NULL;
setDefaults();
readParameters(config_file);
if (readPartsFromFile) readAtoms();
if (readBondsFromFile) readBonds();
if (readExcludesFromFile) readExcludes();
if (readAnglesFromFile) readAngles();
if (readDihedralsFromFile) readDihedrals();
/*
if (kTGridFile.length() != 0) {
printf("\nFound kT grid file: %s\n", kTGridFile.val());
kTGrid = new BaseGrid(kTGridFile.val());
printf("Loaded `%s'.\n", kTGridFile.val());
printf("System size %s.\n", kTGrid->getExtent().toString().val());
}
*/
if (temperatureGrid.length() != 0) {
printf("\nFound temperature grid file: %s\n", temperatureGrid.val());
tGrid = new BaseGrid(temperatureGrid.val());
printf("Loaded `%s'.\n", temperatureGrid.val());
printf("System size %s.\n", tGrid->getExtent().toString().val());
float ToSo = 1.0f / (295.0f * 4.634248239f); // 1 / (To * sigma(To))
sigmaT = new BaseGrid(temperatureGrid.val());
sigmaT->shift(-122.8305f);
sigmaT->scale(0.0269167f);
sigmaT->mult(*tGrid);
sigmaT->scale(ToSo);
kTGrid = new BaseGrid(temperatureGrid.val());
float factor = kT/295.0f;
kTGrid->scale(factor);
// char outFile[256];
// char comment[256]; sprintf(comment,"KTGrid");
// sprintf(outFile,"kTGrid.dx");
// kTGrid->write(outFile, comment);
}
printf("\nFound %d particle types.\n", numParts);
// Load the potential grids.
printf("Loading the potential grids...\n");
for (int i = 0; i < numParts; i++) {
// Decide which type of grid is given.
String map = partGridFile[i];
int len = map.length();
if (len >= 3 && map[len-3]=='.' && map[len-2]=='d' && map[len-1]=='x') {
// A dx file. Load the old-fashioned way.
part[i].pmf = new BaseGrid(map.val());
part[i].meanPmf = part[i].pmf->mean();
printf("Loaded dx grid `%s'.\n", map.val());
printf("System size %s.\n", part[i].pmf->getExtent().toString().val());
} else if (len >= 4 && map[len-4]=='.' && map[len-3]=='d' && map[len-2]=='e' && map[len-1]=='f') {
// A system definition file.
String rootGrid = OverlordGrid::readDefFirst(map);
OverlordGrid* over = new OverlordGrid(rootGrid.val());
int count = over->readDef(map);
printf("Loaded system def file `%s'.\n", map.val());
printf("Found %d unique grids.\n", over->getUniqueGridNum());
printf("Linked %d subgrids.\n", count);
part[i].pmf = static_cast<BaseGrid*>(over);
part[i].meanPmf = part[i].pmf->mean();
} else {
printf("WARNING: Unrecognized gridFile extension. Must be *.def or *.dx.\n");
exit(-1);
}
if (partForceXGridFile[i].length() != 0) {
part[i].forceXGrid = new BaseGrid(partForceXGridFile[i].val());
printf("Loaded `%s'.\n", partForceXGridFile[i].val());
printf("System size %s.\n", part[i].forceXGrid->getExtent().toString().val());
}
if (partForceYGridFile[i].length() != 0) {
part[i].forceYGrid = new BaseGrid(partForceYGridFile[i].val());
printf("Loaded `%s'.\n", partForceYGridFile[i].val());
printf("System size %s.\n", part[i].forceYGrid->getExtent().toString().val());
}
if (partForceZGridFile[i].length() != 0) {
part[i].forceZGrid = new BaseGrid(partForceZGridFile[i].val());
printf("Loaded `%s'.\n", partForceZGridFile[i].val());
printf("System size %s.\n", part[i].forceZGrid->getExtent().toString().val());
}
if (partDiffusionGridFile[i].length() != 0) {
part[i].diffusionGrid = new BaseGrid(partDiffusionGridFile[i].val());
printf("Loaded `%s'.\n", partDiffusionGridFile[i].val());
printf("System size %s.\n", part[i].diffusionGrid->getExtent().toString().val());
}
if (temperatureGrid.length() != 0) {
if (partDiffusionGridFile[i].length() != 0) {
part[i].diffusionGrid->mult(*sigmaT);
} else {
part[i].diffusionGrid = new BaseGrid(*sigmaT);
part[i].diffusionGrid->scale(part[i].diffusion);
// char outFile[256];
// char comment[256]; sprintf(comment,"Diffusion for particle type %d", i);
// sprintf(outFile,"diffusion%d.dx",i);
// part[i].diffusionGrid->write(outFile, comment);
}
}
}
// Load reservoir files if any
for (int i = 0; i < numParts; i++) {
if (partReservoirFile[i].length() != 0) {
printf("\nLoading the reservoirs for %s... \n", part[i].name.val());
part[i].reservoir = new Reservoir(partReservoirFile[i].val());
int nRes = part[i].reservoir->length();
printf("\t -> %d reservoir(s) found in `%s'.\n", nRes, partReservoirFile[i].val());
}
}
// Get the system dimensions
// from the dimensions of supplied 3D potential maps
sys = part[0].pmf;
sysDim = part[0].pmf->getExtent();
// Get the initial number of particles.
//
printf("\nCounting particles specified in the ");
if (restartCoordinates.length() > 0) {
// Read them from the restart file.
printf("restart file.\n");
num = countRestart(restartCoordinates.val());
} else if (numPartsFromFile == 0) {
// Sum up all particles in config file
printf("configuration file.\n");
//int num0 = 0;
num = 0;
for (int i = 0; i < numParts; i++) num += part[i].num;
//num = num0;
} else {
// Determine number of particles from input file (PDB-style)
printf("input file.\n");
num = numPartsFromFile;
}
// Set the number capacity.
printf("\n");
printf("Initial particles: %d\n", num);
if (numCap <= 0) numCap = numCapFactor*num; // max number of particles
if (numCap <= 0) numCap = 20;
// Allocate particle variables.
pos = new Vector3[num * simNum];
type = new int[num * simNum];
serial = new int[num * simNum];
posLast = new Vector3[num * simNum];
name = new String[num * simNum];
currSerial = 0;
printf("\nCounting rigid bodies specified in the configuration file.\n");
numRB = 0;
for (int i = 0; i < numRigidTypes; i++) numRB += rigidBody[i].num;
// // state data
// rbPos = new Vector3[numRB * simNum];
// type = new int[numRB * simNum];
}
printf("Initial RigidBodies: %d\n", numRB);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Create exclusions from the exclude rule, if it was specified in the config file
if (excludeRule != String("")) {
int oldNumExcludes = numExcludes;
Exclude* newExcludes = makeExcludes(bonds, bondMap, num, numBonds, excludeRule, numExcludes);
if (excludes == NULL) {
excludes = new Exclude[numExcludes];
} else if (numExcludes >= excludeCapacity) {
Exclude* tempExcludes = excludes;
excludes = new Exclude[numExcludes];
for (int i = 0; i < oldNumExcludes; i++)
excludes[i] = tempExcludes[i];
delete tempExcludes;
}
for (int i = oldNumExcludes; i < numExcludes; i++)
excludes[i] = newExcludes[i - oldNumExcludes];
printf("Built %d exclusions.\n",numExcludes);
// Call compareExcludeIndex with qsort to sort the excludes by BOTH ind1 AND ind2
std::sort(excludes, excludes + numExcludes, compare());
/* Each particle may have a varying number of excludes
* excludeMap is an array with one element for each particle
* which keeps track of where a particle's excludes are stored
* in the excludes array.
* excludeMap[i].x is the index in the excludes array where the ith particle's excludes begin
* excludeMap[i].y is the index in the excludes array where the ith particle's excludes end
*/
excludeMap = new int2[numPartsFromFile];
for (int i = 0; i < numPartsFromFile; i++) {
excludeMap[i].x = -1;
excludeMap[i].y = -1;
}
int currPart = -1;
int lastPart = -1;
for (int i = 0; i < numExcludes; i++) {
if (excludes[i].ind1 != currPart) {
currPart = excludes[i].ind1;
excludeMap[currPart].x = i;
if (lastPart >= 0)
excludeMap[lastPart].y = i;
lastPart = currPart;
}
}
}
// Some geometric stuff that should be gotten rid of.
Vector3 buffer = (sys->getCenter() + 2.0f*sys->getOrigin())/3.0f;
initialZ = buffer.z;
// Set the initial conditions.
// Do the initial conditions come from restart coordinates?
// inputCoordinates are ignored if restartCoordinates exist.
/*
if (restartCoordinates.length() > 0) {
loadRestart(restartCoordinates.val());
printf("Loaded %d restart coordinates from `%s'.\n", num, restartCoordinates.val());
printf("Particle numbers specified in the configuration file will be ignored.\n");
} else {
// Set the particle types.
// Load coordinates from a file?
if (numPartsFromFile > 0) {
for (int i = 0; i < num; i++) {
int numTokens = partsFromFile[i].tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
partsFromFile[i].tokenize(tokenList);
int currType = 0;
for (int j = 0; j < numParts; j++)
if (tokenList[2] == part[j].name)
currType = j;
type[i] = currType;
serial[i] = currSerial;
currSerial++;
pos[i] = Vector3(atof(tokenList[3].val()), atof(tokenList[4].val()), atof(tokenList[5].val()));
}
if (partsFromFile != NULL) {
delete[] partsFromFile;
partsFromFile = NULL;
}
} else if (inputCoordinates.length() > 0) {
populate();
printf("Loading coordinates from %s.\n", inputCoordinates.val());
bool loaded = loadCoordinates(inputCoordinates.val());
if (loaded)
printf("Loaded initial coordinates from %s.\n", inputCoordinates.val());
}
}
*/
loadedCoordinates = false;
// If we have a restart file - use it
if (restartCoordinates.length() > 0) {
loadRestart(restartCoordinates.val());
printf("Loaded %d restart coordinates from `%s'.\n", num, restartCoordinates.val());
printf("Particle numbers specified in the configuration file will be ignored.\n");
loadedCoordinates = true;
} else {
// Load coordinates from a file?
if (numPartsFromFile > 0) {
loadedCoordinates = true;
for (int i = 0; i < num; i++) {
int numTokens = partsFromFile[i].tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
partsFromFile[i].tokenize(tokenList);
int currType = 0;
for (int j = 0; j < numParts; j++)
if (tokenList[2] == part[j].name)
currType = j;
for (int s = 0; s < simNum; ++s)
type[i + s*num] = currType;
serial[i] = currSerial++;
pos[i] = Vector3(atof(tokenList[3].val()),
atof(tokenList[4].val()),
atof(tokenList[5].val()));
}
delete[] partsFromFile;
partsFromFile = NULL;
} else {
// Not loading coordinates from a file
populate();
if (inputCoordinates.length() > 0) {
printf("Loading coordinates from %s ... ", inputCoordinates.val());
loadedCoordinates = loadCoordinates(inputCoordinates.val());
if (loadedCoordinates)
printf("done!\n");
}
}
}
// Get the maximum particle radius.
minimumSep = 0.0f;
for (int i = 0; i < numParts; ++i)
minimumSep = std::max(minimumSep, part[i].radius);
minimumSep *= 2.5f; // Make it a little bigger.
// Default outputEnergyPeriod
if (outputEnergyPeriod < 0)
outputEnergyPeriod = 10 * outputPeriod;
// If we are running with debug ON, ask the user which force computation to use
if (debug)
getDebugForce();
printf("\n");
switchStart = cutoff - switchLen;
if (fullLongRange == 0)
printf("Cutting off the potential from %.10g to %.10g.\n", switchStart, switchStart+switchLen);
if (fullLongRange != 0)
printf("No cell decomposition created.\n");
}
Configuration::~Configuration() {
// System state
delete[] pos;
delete[] posLast;
delete[] type;
delete[] name;
// Particle parameters
delete[] part;
delete[] partGridFile;
delete[] partForceXGridFile;
delete[] partForceYGridFile;
delete[] partForceZGridFile;
delete[] partDiffusionGridFile;
delete[] partReservoirFile;
if (partsFromFile != NULL) delete[] partsFromFile;
if (bonds != NULL) delete[] bonds;
if (bondMap != NULL) delete[] bondMap;
if (excludes != NULL) delete[] excludes;
if (excludeMap != NULL) delete[] excludeMap;
if (angles != NULL) delete[] angles;
if (dihedrals != NULL) delete[] dihedrals;
// Table parameters
delete[] partTableFile;
delete[] partTableIndex0;
delete[] partTableIndex1;
delete[] bondTableFile;
delete[] angleTableFile;
delete[] dihedralTableFile;
if (type_d != NULL) {
gpuErrchk(cudaFree(type_d));
gpuErrchk(cudaFree(sys_d));
gpuErrchk(cudaFree(kTGrid_d));
gpuErrchk(cudaFree(part_d));
gpuErrchk(cudaFree(bonds_d));
gpuErrchk(cudaFree(bondMap_d));
gpuErrchk(cudaFree(excludes_d));
gpuErrchk(cudaFree(excludeMap_d));
gpuErrchk(cudaFree(angles_d));
gpuErrchk(cudaFree(dihedrals_d));
}
}
void Configuration::copyToCUDA() {
printf("Copying to GPU %d\n", GPUManager::current());
BrownianParticleType **part_addr = new BrownianParticleType*[numParts];
RigidBodyType **rb_addr = new RigidBodyType*[numRigidTypes];
// Copy the BaseGrid objects and their member variables/objects
gpuErrchk(cudaMalloc(&part_d, sizeof(BrownianParticleType*) * numParts));
gpuErrchk(cudaMalloc(&rbType_d, sizeof(RigidBodyType*) * numRigidTypes));
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// TODO: The above line fails when there is not enough memory. If it fails, stop.
for (int i = 0; i < numParts; i++) {
BaseGrid *pmf = NULL, *diffusionGrid = NULL;
BrownianParticleType *b = new BrownianParticleType(part[i]);
// Copy PMF
if (part[i].pmf != NULL) {
float *val = NULL;
size_t sz = sizeof(float) * part[i].pmf->getSize();
gpuErrchk(cudaMalloc(&pmf, sizeof(BaseGrid)));
gpuErrchk(cudaMalloc(&val, sz));
gpuErrchk(cudaMemcpyAsync(val, part[i].pmf->val, sz, cudaMemcpyHostToDevice));
BaseGrid *pmf_h = new BaseGrid(*part[i].pmf);
pmf_h->val = val;
gpuErrchk(cudaMemcpy(pmf, pmf_h, sizeof(BaseGrid), cudaMemcpyHostToDevice));
pmf_h->val = NULL;
}
// Copy the diffusion grid
if (part[i].diffusionGrid != NULL) {
float *val = NULL;
size_t sz = sizeof(float) * part[i].diffusionGrid->getSize();
BaseGrid *diffusionGrid_h = new BaseGrid(*part[i].diffusionGrid);
gpuErrchk(cudaMalloc(&diffusionGrid, sizeof(BaseGrid)));
gpuErrchk(cudaMalloc(&val, sz));
diffusionGrid_h->val = val;
gpuErrchk(cudaMemcpyAsync(diffusionGrid, diffusionGrid_h, sizeof(BaseGrid),
cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(val, part[i].diffusionGrid->val, sz, cudaMemcpyHostToDevice));
diffusionGrid_h->val = NULL;
}
b->pmf = pmf;
b->diffusionGrid = diffusionGrid;
gpuErrchk(cudaMalloc(&part_addr[i], sizeof(BrownianParticleType)));
gpuErrchk(cudaMemcpyAsync(part_addr[i], b, sizeof(BrownianParticleType),
cudaMemcpyHostToDevice));
}
// RBTODO: moved this out of preceding loop; was that correct?
gpuErrchk(cudaMemcpyAsync(part_d, part_addr, sizeof(BrownianParticleType*) * numParts,
cudaMemcpyHostToDevice));
printf("copying RBs\n");
// Copy rigidbody types
// http://stackoverflow.com/questions/16024087/copy-an-object-to-device
for (int i = 0; i < numRigidTypes; i++) {
printf("working on RB %d\n",i);
RigidBodyType *rb = &(rigidBody[i]); // temporary for convenience
rb->updateRaw();
int ng = rb->numPotGrids;
// copy rigidbody to device
// RigidBodyType *rb_d;
gpuErrchk(cudaMalloc(&rb_addr[i], sizeof(RigidBodyType)));
gpuErrchk(cudaMemcpy(rb_addr[i], rb, sizeof(RigidBodyType),
// copy rb->grid to device
BaseGrid * gtmp;
// gtmp = new BaseGrid[ng];
// allocate grids on device
// copy temporary host pointer to device pointer
// copy grids to device through temporary host poin
gpuErrchk(cudaMalloc((void **) >mp, sz));
gpuErrchk(cudaMemcpy(&(rb_addr[i]->rawPotentialGrids), >mp,
sizeof(BaseGrid*) * ng, cudaMemcpyHostToDevice ));
gpuErrchk(cudaMemcpy(gtmp, &(rb->rawPotentialGrids),
sizeof(BaseGrid) * ng, cudaMemcpyHostToDevice ));
for (int gid = 0; gid < ng; gid++) {
gpuErrchk(cudaMemcpy(&(gtmp[gid]), &(rb->rawPotentialGrids[gid]),
sizeof(BaseGrid), cudaMemcpyHostToDevice ));
}
printf(" RigidBodyType %d: numGrids = %d\n", i, ng);
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// copy grid data to device
for (int gid = 0; gid < ng; gid++) {
BaseGrid *g = &(rb->rawPotentialGrids[gid]); // convenience
int len = g->getSize();
float **tmpData;
tmpData = new float*[len];
printf(" RigidBodyType %d: potGrid[%d] size: %d\n", i, gid, len);
for (int k = 0; k < len; k++)
printf(" rbType_d[%d]->potGrid[%d].val[%d]: %g\n",
i, gid, k, g->val[k]);
// allocate grid data on device
// copy temporary host pointer to device pointer
// copy data to device through temporary host pointer
sz = sizeof(float*) * len;
gpuErrchk(cudaMalloc((void **) &tmpData, sz));
// gpuErrchk(cudaMemcpy( &(rb_addr[i]->rawPotentialGrids[gid].val), &tmpData,
// sizeof(float*), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy( &(gtmp[gid].val), &tmpData,
sizeof(float*), cudaMemcpyHostToDevice));
sz = sizeof(float) * len;
gpuErrchk(cudaMemcpy( tmpData, g->val, sz, cudaMemcpyHostToDevice));
// RBTODO: why can't this be deleted?
// delete[] tmpData;
}
// density grids
for (int i = 0; i < numRigidTypes; i++) {
printf("working on RB %d\n",i);
RigidBodyType *rb = &(rigidBody[i]); // temporary for convenience
int ng = rb->numDenGrids;
BaseGrid * gtmp;
size_t sz = sizeof(BaseGrid)*ng;
// allocate grids on device
// copy temporary host pointer to device pointer
// copy grids to device through temporary host poin
gpuErrchk(cudaMalloc((void **) >mp, sz));
gpuErrchk(cudaMemcpy(&(rb_addr[i]->rawDensityGrids), >mp,
sizeof(BaseGrid*) * ng, cudaMemcpyHostToDevice ));
gpuErrchk(cudaMemcpy(gtmp, &(rb->rawDensityGrids),
sizeof(BaseGrid) * ng, cudaMemcpyHostToDevice ));
for (int gid = 0; gid < ng; gid++) {
gpuErrchk(cudaMemcpy(&(gtmp[gid]), &(rb->rawDensityGrids[gid]),
sizeof(BaseGrid), cudaMemcpyHostToDevice ));
}
printf(" RigidBodyType %d: numGrids = %d\n", i, ng);
// copy grid data to device
for (int gid = 0; gid < ng; gid++) {
BaseGrid *g = &(rb->rawDensityGrids[gid]); // convenience
int len = g->getSize();
float **tmpData;
tmpData = new float*[len];
printf(" RigidBodyType %d: potGrid[%d] size: %d\n", i, gid, len);
for (int k = 0; k < len; k++)
printf(" rbType_d[%d]->potGrid[%d].val[%d]: %g\n",
i, gid, k, g->val[k]);
// allocate grid data on device
// copy temporary host pointer to device pointer
// copy data to device through temporary host pointer
sz = sizeof(float*) * len;
gpuErrchk(cudaMalloc((void **) &tmpData, sz));
gpuErrchk(cudaMemcpy( &(gtmp[gid].val), &tmpData,
sizeof(float*), cudaMemcpyHostToDevice));
sz = sizeof(float) * len;
gpuErrchk(cudaMemcpy( tmpData, g->val, sz, cudaMemcpyHostToDevice));
// RBTODO: why can't this be deleted?
// delete[] tmpData;
}
}
gpuErrchk(cudaMemcpy(rbType_d, rb_addr, sizeof(RigidBodyType*) * numRigidTypes,
cudaMemcpyHostToDevice));
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// kTGrid_d
kTGrid_d = NULL;
if (temperatureGrid.length() > 0) {
gpuErrchk(cudaMalloc(&kTGrid_d, sizeof(BaseGrid)));
gpuErrchk(cudaMemcpyAsync(kTGrid_d, kTGrid, sizeof(BaseGrid), cudaMemcpyHostToDevice));
}
// type_d and sys_d
gpuErrchk(cudaMalloc(&type_d, sizeof(int) * num * simNum));
gpuErrchk(cudaMemcpyAsync(type_d, type, sizeof(int) * num * simNum, cudaMemcpyHostToDevice));
gpuErrchk(cudaMalloc(&sys_d, sizeof(BaseGrid)));
gpuErrchk(cudaMemcpyAsync(sys_d, sys, sizeof(BaseGrid), cudaMemcpyHostToDevice));
if (numBonds > 0) {
// bonds_d
gpuErrchk(cudaMalloc(&bonds_d, sizeof(Bond) * numBonds));
gpuErrchk(cudaMemcpyAsync(bonds_d, bonds, sizeof(Bond) * numBonds, cudaMemcpyHostToDevice));
// bondMap_d
gpuErrchk(cudaMalloc(&bondMap_d, sizeof(int2) * num));
gpuErrchk(cudaMemcpyAsync(bondMap_d, bondMap, sizeof(int2) * num, cudaMemcpyHostToDevice));
}
if (numExcludes > 0) {
// excludes_d
gpuErrchk(cudaMalloc(&excludes_d, sizeof(Exclude) * numExcludes));
gpuErrchk(cudaMemcpyAsync(excludes_d, excludes, sizeof(Exclude) * numExcludes,
cudaMemcpyHostToDevice));
// excludeMap_d
gpuErrchk(cudaMalloc(&excludeMap_d, sizeof(int2) * num));
gpuErrchk(cudaMemcpyAsync(excludeMap_d, excludeMap, sizeof(int2) * num,
cudaMemcpyHostToDevice));
}
if (numAngles > 0) {
// angles_d
gpuErrchk(cudaMalloc(&angles_d, sizeof(Angle) * numAngles));
gpuErrchk(cudaMemcpyAsync(angles_d, angles, sizeof(Angle) * numAngles,
cudaMemcpyHostToDevice));
}
if (numDihedrals > 0) {
// dihedrals_d
gpuErrchk(cudaMalloc(&dihedrals_d, sizeof(Dihedral) * numDihedrals));
gpuErrchk(cudaMemcpyAsync(dihedrals_d, dihedrals,
sizeof(Dihedral) * numDihedrals,
cudaMemcpyHostToDevice));
}
gpuErrchk(cudaDeviceSynchronize());
}
void Configuration::setDefaults() {
// System parameters
outputName = "out";
timestep = 1e-5f;
steps = 100;
seed = 0;
inputCoordinates = "";
restartCoordinates = "";
numberFluct = 0;
numberFluctPeriod = 200;
interparticleForce = 1;
tabulatedPotential = 0;
fullLongRange = 1;
kT = 1.0f;
// kTGridFile = ""; // Commented out for an unknown reason
temperatureGrid = "";
coulombConst = 566.440698f/92.0f;
electricField = 0.0f;
cutoff = 10.0f;
switchLen = 2.0f;
outputPeriod = 200;
outputEnergyPeriod = -1;
outputFormat = TrajectoryWriter::formatDcd;
currentSegmentZ = -1.0f;
numCap = 0;
decompPeriod = 10;
readPartsFromFile = 0;
numPartsFromFile = 0;
partsFromFile = NULL;
readBondsFromFile = false;
numBonds = 0;
bonds = NULL;
bondMap = NULL;
numTabBondFiles = 0;
readExcludesFromFile = false;
numExcludes = 0;
excludeCapacity = 256;
excludes = NULL;
excludeMap = NULL;
excludeRule = "";
readAnglesFromFile = false;
numAngles = 0;
angles = NULL;
numTabAngleFiles = 0;
readDihedralsFromFile = false;
numDihedrals = 0;
dihedrals = NULL;
numTabDihedralFiles = 0;
// Hidden parameters
// Might be parameters later
numCapFactor = 5;
}
int Configuration::readParameters(const char * config_file) {
Reader config(config_file);
printf("Read config file %s\n", config_file);
// Get the number of particles.
const int numParams = config.length();
numParts = config.countParameter("particle");
numRigidTypes = config.countParameter("rigidBody");
// Allocate the particle variables.
part = new BrownianParticleType[numParts];
partGridFile = new String[numParts];
partForceXGridFile = new String[numParts];
partForceYGridFile = new String[numParts];
partForceZGridFile = new String[numParts];
partDiffusionGridFile = new String[numParts];
partReservoirFile = new String[numParts];
// Allocate the table variables.
partTableFile = new String[numParts*numParts];
partTableIndex0 = new int[numParts*numParts];
partTableIndex1 = new int[numParts*numParts];
rigidBody = new RigidBodyType[numRigidTypes];
int btfcap = 10;
bondTableFile = new String[btfcap];
int atfcap = 10;
angleTableFile = new String[atfcap];
int dtfcap = 10;
dihedralTableFile = new String[dtfcap];
int currPart = -1;
int currTab = -1;
int currBond = -1;
int currAngle = -1;
int currDihedral = -1;
int currRB = -1;
int partClassPart = 0;
int partClassRB = 1;
int currPartClass = -1; // 0 => particle, 1 => rigidBody
for (int i = 0; i < numParams; i++) {
String param = config.getParameter(i);
String value = config.getValue(i);
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
if (param == String("outputName"))
outputName = value;
else if (param == String("timestep"))
timestep = (float) strtod(value.val(), NULL);
else if (param == String("steps"))
steps = atol(value.val());
else if (param == String("seed"))
seed = atoi(value.val());
else if (param == String("inputCoordinates"))
inputCoordinates = value;
else if (param == String("restartCoordinates"))
restartCoordinates = value;
else if (param == String("kT"))
kT = (float) strtod(value.val(), NULL);
// else if (param == String("kTGridFile")) kTGridFile = value;
else if (param == String("temperatureGrid"))
temperatureGrid = value;
else if (param == String("numberFluct"))
numberFluct = atoi(value.val());
else if (param == String("numberFluctPeriod"))
numberFluctPeriod = atoi(value.val());
else if (param == String("interparticleForce"))
interparticleForce = atoi(value.val());
else if (param == String("fullLongRange") || param == String("fullElect") )
fullLongRange = atoi(value.val());
else if (param == String("coulombConst"))
coulombConst = (float) strtod(value.val(), NULL);
else if (param == String("electricField"))
electricField = (float) strtod(value.val(), NULL);
else if (param == String("cutoff"))
cutoff = (float) strtod(value.val(), NULL);
else if (param == String("switchLen"))
switchLen = (float) strtod(value.val(), NULL);
else if (param == String("outputPeriod"))
outputPeriod = atoi(value.val());
else if (param == String("outputEnergyPeriod"))
outputEnergyPeriod = atoi(value.val());
else if (param == String("outputFormat"))
outputFormat = TrajectoryWriter::getFormatCode(value);
else if (param == String("currentSegmentZ"))
currentSegmentZ = (float) strtod(value.val(), NULL);
else if (param == String("numCap"))
numCap = atoi(value.val());
else if (param == String("decompPeriod"))
decompPeriod = atoi(value.val());
// PARTICLES
else if (param == String("particle")) {
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
else if (param == String("gridFile"))
partGridFile[currPart] = value;
else if (param == String("forceXGridFile"))
partForceXGridFile[currPart] = value;
else if (param == String("forceYGridFile"))
partForceYGridFile[currPart] = value;
else if (param == String("forceZGridFile"))
partForceZGridFile[currPart] = value;
else if (param == String("diffusionGridFile"))
partDiffusionGridFile[currPart] = value;
else if (param == String("diffusion"))
part[currPart].diffusion = (float) strtod(value.val(), NULL);
else if (param == String("charge"))
part[currPart].charge = (float) strtod(value.val(), NULL);
else if (param == String("radius"))
part[currPart].radius = (float) strtod(value.val(), NULL);
else if (param == String("eps"))
part[currPart].eps = (float) strtod(value.val(), NULL);
else if (param == String("reservoirFile"))
partReservoirFile[currPart] = value;
else if (param == String("tabulatedPotential"))
tabulatedPotential = atoi(value.val());
else if (param == String("tabulatedFile"))
readTableFile(value, ++currTab);
else if (param == String("tabulatedBondFile")) {
if (numTabBondFiles >= btfcap) {
String* temp = bondTableFile;
btfcap *= 2;
bondTableFile = new String[btfcap];
for (int j = 0; j < numTabBondFiles; j++)
bondTableFile[i] = temp[i];
delete[] temp;
}
if (readBondFile(value, ++currBond))
numTabBondFiles++;
} else if (param == String("inputParticles")) {
if (readPartsFromFile) {
printf("WARNING: More than one particle file specified. Discarding new file.\n");
} else {
partFile = value;
readPartsFromFile = true;
loadedCoordinates = true;
}
} else if (param == String("inputBonds")) {
if (readBondsFromFile) {
printf("WARNING: More than one bond file specified. Discarding new bond file.\n");
} else {
bondFile = value;
readBondsFromFile = true;
}
} else if (param == String("inputExcludes")) {
if (readExcludesFromFile) {
printf("WARNING: More than one exclude file specified. Discarding new exclude file.\n");
} else {
excludeFile = value;
readExcludesFromFile = true;
}
} else if (param == String("exclude") or param == String("exclusion")) {
excludeRule = value;
} else if (param == String("inputAngles")) {
if (readAnglesFromFile) {
printf("WARNING: More than one angle file specified. Discarding new angle file.\n");
} else {
angleFile = value;
readAnglesFromFile = true;
}
} else if (param == String("tabulatedAngleFile")) {
if (numTabAngleFiles >= atfcap) {
String* temp = angleTableFile;
atfcap *= 2;
angleTableFile = new String[atfcap];
for (int j = 0; j < numTabAngleFiles; j++)
angleTableFile[i] = temp[i];
delete[] temp;
}
if (readAngleFile(value, ++currAngle))
numTabAngleFiles++;
} else if (param == String("inputDihedrals")) {
if (readDihedralsFromFile) {
printf("WARNING: More than one dihedral file specified. Discarding new dihedral file.\n");
} else {
dihedralFile = value;
readDihedralsFromFile = true;
}
} else if (param == String("tabulatedDihedralFile")) {
if (numTabDihedralFiles >= dtfcap) {
String * temp = dihedralTableFile;
dtfcap *= 2;
dihedralTableFile = new String[dtfcap];
for (int j = 0; j < numTabDihedralFiles; j++)
dihedralTableFile[i] = temp[i];
delete[] temp;
}
if (readDihedralFile(value, ++currDihedral))
numTabDihedralFiles++;
}
// RIGID BODY
else if (param == String("rigidBody")) {
// part[++currPart] = BrownianParticleType(value);
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
rigidBody[++currRB] = RigidBodyType(value);
currPartClass = partClassRB;
}
else if (param == String("mass"))
rigidBody[currRB].mass = (float) strtod(value.val(), NULL);
else if (param == String("inertia"))
rigidBody[currRB].inertia = stringToVector3( value );
else if (param == String("transDamping"))
rigidBody[currRB].transDamping = stringToVector3( value );
else if (param == String("rotDamping"))
rigidBody[currRB].rotDamping = stringToVector3( value );
else if (param == String("potentialGrid"))
rigidBody[currRB].addPotentialGrid(value);
else if (param == String("potentialGrid"))
rigidBody[currRB].addPotentialGrid(value);
// COMMON
else if (param == String("num")) {
if (currPartClass == partClassPart)
part[currPart].num = atoi(value.val());
else if (currPartClass == partClassRB)
rigidBody[currRB].num = atoi(value.val());
}
// UNKNOWN
else {
printf("WARNING: Unrecognized keyword `%s'.\n", param.val());
}
}
return numParams;
}
Vector3 Configuration::stringToVector3(String s) {
// tokenize and return
int numTokens = s.tokenCount();
if (numTokens != 3) {
printf("ERROR: could not convert input to Vector3.\n"); // TODO improve this message
exit(1);
}
String* token = new String[numTokens];
s.tokenize(token);
Vector3 v( (float) strtod(token[0], NULL),
(float) strtod(token[1], NULL),
(float) strtod(token[2], NULL) );
return v;
}
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
void Configuration::readAtoms() {
// Open the file
FILE* inp = fopen(partFile.val(), "r");
char line[256];
// If the particle file cannot be found, exit the program
if (inp == NULL) {
printf("ERROR: Could not open `%s'.\n", partFile.val());
bool found = true;
for (int i = 0; i < numParts; i++)
if (part[i].num == 0)
found = false;
if (!found) {
printf("ERROR: Number of particles not specified in config file.\n");
exit(1);
}
printf("Using default coordinates file\n");
return;
}
// Our particle array has a starting capacity of 256
// We will expand this later if we need to.
int capacity = 256;
numPartsFromFile = 0;
partsFromFile = new String[capacity];
indices = new int[capacity];
indices[0] = 0;
// Get and process all lines of input
while (fgets(line, 256, inp) != NULL) {
// Lines in the particle file that begin with # are comments
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate ATOM input lines have 6 tokens:
// ATOM | Index | Name | X-coord | Y-coord | Z-coord
// A line without exactly six tokens should be discarded.
if (numTokens != 6) {
printf("Warning: Invalid particle file line: %s\n", line);
return;
}
// Ensure that this particle's type was defined in the config file.
// If not, discard this line.
bool found;
for (int j = 0; j < numParts; j++) {
// If this particle type exists, add a new one to the list
if (part[j].name == tokenList[2]) {
found = true;
part[j].num++;
}
}
// If the particle's type does not exist according to the config file, discard it.
if (!found) {
printf("WARNING Unknown particle type %s found and discarded.\n", tokenList[2].val());
continue;
}
// If we don't have enough room in our particle array, we need to expand it.
if (numPartsFromFile >= capacity) {
// Temporary pointers to the old arrays
String* temp = partsFromFile;
int* temp2 = indices;
// Double the capacity
capacity *= 2;
// Create pointers to new arrays which are twice the size of the old ones
partsFromFile = new String[capacity];
indices = new int[capacity];
// Copy the old values into the new arrays
for (int j = 0; j < numPartsFromFile; j++) {
partsFromFile[j] = temp[j];