Newer
Older
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
cmaffeo2
committed
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"CUDA Error: %s %s %d\n", cudaGetErrorString(code), __FILE__, line);
if (abort) exit(code);
}
}
Configuration::Configuration(const char* config_file, int simNum, bool debug) :
simNum(simNum) {
// Read the parameters.
eguzman6
committed
//type_d = NULL;
eguzman6
committed
//bonds_d = NULL;
//bondMap_d = NULL;
//excludes_d = NULL;
//excludeMap_d = NULL;
//angles_d = NULL;
//dihedrals_d = NULL;
Maxim Belkin
committed
// Get the number of particles
printf("\nCounting particles specified in the ");
if (restartCoordinates.length() > 0) {
Maxim Belkin
committed
// Read them from the restart file.
printf("restart file.\n");
num = countRestart(restartCoordinates.val());
Maxim Belkin
committed
} else {
if (readPartsFromFile) readAtoms();
if (numPartsFromFile > 0) {
// Determine number of particles from input file (PDB-style)
printf("input file.\n");
num = numPartsFromFile;
} else {
// Sum up all particles in config file
printf("configuration file.\n");
//int num0 = 0;
num = 0;
for (int i = 0; i < numParts; i++) num += part[i].num;
//num = num0;
}
} // end result: variable "num" is set
Maxim Belkin
committed
// Set the number capacity
printf("\nInitial particles: %d\n", num);
if (numCap <= 0) numCap = numCapFactor*num; // max number of particles
if (numCap <= 0) numCap = 20;
Maxim Belkin
committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Allocate particle variables.
pos = new Vector3[num * simNum];
type = new int[num * simNum];
serial = new int[num * simNum];
posLast = new Vector3[num * simNum];
name = new String[num * simNum];
currSerial = 0;
// Now, load the coordinates
loadedCoordinates = false;
// If we have a restart file - use it
if (restartCoordinates.length() > 0) {
loadRestart(restartCoordinates.val());
printf("Loaded %d restart coordinates from `%s'.\n", num, restartCoordinates.val());
printf("Particle numbers specified in the configuration file will be ignored.\n");
loadedCoordinates = true;
} else {
// Load coordinates from a file?
if (numPartsFromFile > 0) {
loadedCoordinates = true;
for (int i = 0; i < num; i++) {
int numTokens = partsFromFile[i].tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
partsFromFile[i].tokenize(tokenList);
int currType = 0;
for (int j = 0; j < numParts; j++)
if (tokenList[2] == part[j].name)
currType = j;
for (int s = 0; s < simNum; ++s)
type[i + s*num] = currType;
serial[i] = currSerial++;
pos[i] = Vector3(atof(tokenList[3].val()),
atof(tokenList[4].val()),
atof(tokenList[5].val()));
}
delete[] partsFromFile;
partsFromFile = NULL;
} else {
// Not loading coordinates from a file
populate();
if (inputCoordinates.length() > 0) {
printf("Loading coordinates from %s ... ", inputCoordinates.val());
loadedCoordinates = loadCoordinates(inputCoordinates.val());
if (loadedCoordinates)
printf("done!\n");
}
}
}
if (readBondsFromFile) readBonds();
if (readExcludesFromFile) readExcludes();
if (readAnglesFromFile) readAngles();
if (readDihedralsFromFile) readDihedrals();
kT = temperature * 0.0019872065f; // `units "k K" "kcal_mol"`
if (temperatureGridFile.length() != 0) {
printf("\nFound temperature grid file: %s\n", temperatureGridFile.val());
tGrid = new BaseGrid(temperatureGridFile.val());
printf("Loaded `%s'.\n", temperatureGridFile.val());
printf("System size %s.\n", tGrid->getExtent().toString().val());
// TODO: ask Max Belkin what this is about and how to remove hard-coded temps
Maxim Belkin
committed
float ToSo = 1.0f / (295.0f * 4.634248239f); // 1 / (To * sigma(To))
sigmaT = new BaseGrid(*tGrid);
sigmaT->shift(-122.8305f);
sigmaT->scale(0.0269167f);
sigmaT->mult(*tGrid);
sigmaT->scale(ToSo);
kTGrid = new BaseGrid(*tGrid);
float factor = 0.0019872065f; // `units "k K" "kcal_mol"`
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
kTGrid->scale(factor);
// char outFile[256];
// char comment[256]; sprintf(comment,"KTGrid");
// sprintf(outFile,"kTGrid.dx");
// kTGrid->write(outFile, comment);
}
printf("\nFound %d particle types.\n", numParts);
// Load the potential grids.
printf("Loading the potential grids...\n");
for (int i = 0; i < numParts; i++) {
// Decide which type of grid is given.
String map = partGridFile[i];
int len = map.length();
if (len >= 3 && map[len-3]=='.' && map[len-2]=='d' && map[len-1]=='x') {
// A dx file. Load the old-fashioned way.
part[i].pmf = new BaseGrid(map.val());
part[i].meanPmf = part[i].pmf->mean();
printf("Loaded dx grid `%s'.\n", map.val());
printf("System size %s.\n", part[i].pmf->getExtent().toString().val());
} else if (len >= 4 && map[len-4]=='.' && map[len-3]=='d' && map[len-2]=='e' && map[len-1]=='f') {
// A system definition file.
String rootGrid = OverlordGrid::readDefFirst(map);
OverlordGrid* over = new OverlordGrid(rootGrid.val());
int count = over->readDef(map);
printf("Loaded system def file `%s'.\n", map.val());
printf("Found %d unique grids.\n", over->getUniqueGridNum());
printf("Linked %d subgrids.\n", count);
part[i].pmf = static_cast<BaseGrid*>(over);
part[i].meanPmf = part[i].pmf->mean();
} else {
printf("WARNING: Unrecognized gridFile extension. Must be *.def or *.dx.\n");
exit(-1);
}
if (partForceXGridFile[i].length() != 0) {
part[i].forceXGrid = new BaseGrid(partForceXGridFile[i].val());
printf("Loaded `%s'.\n", partForceXGridFile[i].val());
printf("System size %s.\n", part[i].forceXGrid->getExtent().toString().val());
}
if (partForceYGridFile[i].length() != 0) {
part[i].forceYGrid = new BaseGrid(partForceYGridFile[i].val());
printf("Loaded `%s'.\n", partForceYGridFile[i].val());
printf("System size %s.\n", part[i].forceYGrid->getExtent().toString().val());
Maxim Belkin
committed
}
if (partForceZGridFile[i].length() != 0) {
part[i].forceZGrid = new BaseGrid(partForceZGridFile[i].val());
printf("Loaded `%s'.\n", partForceZGridFile[i].val());
printf("System size %s.\n", part[i].forceZGrid->getExtent().toString().val());
}
if (partDiffusionGridFile[i].length() != 0) {
part[i].diffusionGrid = new BaseGrid(partDiffusionGridFile[i].val());
printf("Loaded `%s'.\n", partDiffusionGridFile[i].val());
printf("System size %s.\n", part[i].diffusionGrid->getExtent().toString().val());
}
if (temperatureGridFile.length() != 0) {
// char comment[256]; sprintf(comment,"Diffusion for particle type %d", i);
// sprintf(outFile,"diffusion%d.dx",i);
// part[i].diffusionGrid->write(outFile, comment);
}
}
}
// Load reservoir files if any
for (int i = 0; i < numParts; i++) {
if (partReservoirFile[i].length() != 0) {
printf("\nLoading the reservoirs for %s... \n", part[i].name.val());
part[i].reservoir = new Reservoir(partReservoirFile[i].val());
int nRes = part[i].reservoir->length();
printf("\t -> %d reservoir(s) found in `%s'.\n", nRes, partReservoirFile[i].val());
}
}
// Get the system dimensions
// from the dimensions of supplied 3D potential maps
sys = part[0].pmf;
sysDim = part[0].pmf->getExtent();
// RBTODO: clean this mess up
/* // RigidBodies... */
/* if (numRigidTypes > 0) { */
/* printf("\nCounting rigid bodies specified in the configuration file.\n"); */
/* numRB = 0; */
/* // grow list of rbs */
/* for (int i = 0; i < numRigidTypes; i++) { */
/* numRB += rigidBody[i].num; */
/* std::vector<RigidBody> tmp; */
/* for (int j = 0; j < rigidBody[i].num; j++) { */
/* tmp.push_back( new RigidBody( this, rigidBody[i] ) ); */
/* } */
/* rbs.push_back(tmp); */
/* } */
// // state data
// rbPos = new Vector3[numRB * simNum];
// type = new int[numRB * simNum];
Maxim Belkin
committed
/* } */
/* printf("Initial RigidBodies: %d\n", numRB); */
Maxim Belkin
committed
// Create exclusions from the exclude rule, if it was specified in the config file
if (excludeRule != String("")) {
int oldNumExcludes = numExcludes;
Exclude* newExcludes = makeExcludes(bonds, bondMap, num, numBonds, excludeRule, numExcludes);
if (excludes == NULL) {
Maxim Belkin
committed
excludes = new Exclude[numExcludes];
} else if (numExcludes >= excludeCapacity) {
Exclude* tempExcludes = excludes;
excludes = new Exclude[numExcludes];
for (int i = 0; i < oldNumExcludes; i++)
excludes[i] = tempExcludes[i];
delete tempExcludes;
Maxim Belkin
committed
}
for (int i = oldNumExcludes; i < numExcludes; i++)
excludes[i] = newExcludes[i - oldNumExcludes];
printf("Built %d exclusions.\n",numExcludes);
// Call compareExcludeIndex with qsort to sort the excludes by BOTH ind1 AND ind2
std::sort(excludes, excludes + numExcludes, compare());
/* Each particle may have a varying number of excludes
* excludeMap is an array with one element for each particle
* which keeps track of where a particle's excludes are stored
* in the excludes array.
* excludeMap[i].x is the index in the excludes array where the ith particle's excludes begin
* excludeMap[i].y is the index in the excludes array where the ith particle's excludes end
*/
excludeMap = new int2[numPartsFromFile];
Maxim Belkin
committed
for (int i = 0; i < numPartsFromFile; i++) {
excludeMap[i].x = -1;
excludeMap[i].y = -1;
}
int currPart = -1;
int lastPart = -1;
for (int i = 0; i < numExcludes; i++) {
if (excludes[i].ind1 != currPart) {
currPart = excludes[i].ind1;
excludeMap[currPart].x = i;
if (lastPart >= 0)
excludeMap[lastPart].y = i;
lastPart = currPart;
}
}
}
// Count number of particles of each type
numPartsOfType = new int[numParts];
for (int i = 0; i < numParts; ++i) {
numPartsOfType[i] = 0;
}
for (int i = 0; i < num; ++i) {
++numPartsOfType[type[i]];
}
// Some geometric stuff that should be gotten rid of.
Vector3 buffer = (sys->getCenter() + 2.0f*sys->getOrigin())/3.0f;
initialZ = buffer.z;
// Set the initial conditions.
// Do the initial conditions come from restart coordinates?
// inputCoordinates are ignored if restartCoordinates exist.
/*
if (restartCoordinates.length() > 0) {
Maxim Belkin
committed
loadRestart(restartCoordinates.val());
printf("Loaded %d restart coordinates from `%s'.\n", num, restartCoordinates.val());
printf("Particle numbers specified in the configuration file will be ignored.\n");
} else {
// Set the particle types.
// Load coordinates from a file?
if (numPartsFromFile > 0) {
Maxim Belkin
committed
for (int i = 0; i < num; i++) {
Maxim Belkin
committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
partsFromFile[i].tokenize(tokenList);
int currType = 0;
for (int j = 0; j < numParts; j++)
if (tokenList[2] == part[j].name)
currType = j;
type[i] = currType;
serial[i] = currSerial;
currSerial++;
pos[i] = Vector3(atof(tokenList[3].val()), atof(tokenList[4].val()), atof(tokenList[5].val()));
}
if (partsFromFile != NULL) {
delete[] partsFromFile;
partsFromFile = NULL;
}
} else if (inputCoordinates.length() > 0) {
populate();
printf("Loading coordinates from %s.\n", inputCoordinates.val());
bool loaded = loadCoordinates(inputCoordinates.val());
if (loaded)
printf("Loaded initial coordinates from %s.\n", inputCoordinates.val());
}
}
*/
// Get the maximum particle radius.
minimumSep = 0.0f;
for (int i = 0; i < numParts; ++i)
minimumSep = std::max(minimumSep, part[i].radius);
minimumSep *= 2.5f; // Make it a little bigger.
// Default outputEnergyPeriod
if (outputEnergyPeriod < 0)
outputEnergyPeriod = 10 * outputPeriod;
// If we are running with debug ON, ask the user which force computation to use
if (debug)
getDebugForce();
printf("\n");
switchStart = cutoff - switchLen;
if (fullLongRange == 0)
printf("Cutting off the potential from %.10g to %.10g.\n", switchStart, switchStart+switchLen);
if (fullLongRange != 0)
printf("No cell decomposition created.\n");
}
Configuration::~Configuration() {
// System state
delete[] pos;
delete[] posLast;
delete[] type;
delete[] name;
// Particle parameters
delete[] part;
delete[] partGridFile;
delete[] partForceXGridFile;
delete[] partForceYGridFile;
delete[] partForceZGridFile;
delete[] partDiffusionGridFile;
delete[] partReservoirFile;
partRigidBodyGrid.clear();
// TODO: plug memory leaks
if (partsFromFile != NULL) delete[] partsFromFile;
if (bonds != NULL) delete[] bonds;
if (bondMap != NULL) delete[] bondMap;
if (excludes != NULL) delete[] excludes;
if (excludeMap != NULL) delete[] excludeMap;
if (angles != NULL) delete[] angles;
if (dihedrals != NULL) delete[] dihedrals;
delete[] numPartsOfType;
// Table parameters
delete[] partTableFile;
delete[] partTableIndex0;
delete[] partTableIndex1;
delete[] bondTableFile;
delete[] angleTableFile;
delete[] dihedralTableFile;
eguzman6
committed
//if (type_d != NULL) {
//gpuErrchk(cudaFree(type_d));
gpuErrchk(cudaFree(sys_d));
gpuErrchk(cudaFree(kTGrid_d));
gpuErrchk(cudaFree(part_d));
eguzman6
committed
//gpuErrchk(cudaFree(bonds_d));
//gpuErrchk(cudaFree(bondMap_d));
//gpuErrchk(cudaFree(excludes_d));
//gpuErrchk(cudaFree(excludeMap_d));
//gpuErrchk(cudaFree(angles_d));
//gpuErrchk(cudaFree(dihedrals_d));
//}
}
void Configuration::copyToCUDA() {
printf("Copying to GPU %d\n", GPUManager::current());
BrownianParticleType **part_addr = new BrownianParticleType*[numParts];
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Copy the BaseGrid objects and their member variables/objects
gpuErrchk(cudaMalloc(&part_d, sizeof(BrownianParticleType*) * numParts));
// TODO: The above line fails when there is not enough memory. If it fails, stop.
for (int i = 0; i < numParts; i++) {
BaseGrid *pmf = NULL, *diffusionGrid = NULL;
BrownianParticleType *b = new BrownianParticleType(part[i]);
// Copy PMF
if (part[i].pmf != NULL) {
float *val = NULL;
size_t sz = sizeof(float) * part[i].pmf->getSize();
gpuErrchk(cudaMalloc(&pmf, sizeof(BaseGrid)));
gpuErrchk(cudaMalloc(&val, sz));
gpuErrchk(cudaMemcpyAsync(val, part[i].pmf->val, sz, cudaMemcpyHostToDevice));
BaseGrid *pmf_h = new BaseGrid(*part[i].pmf);
pmf_h->val = val;
gpuErrchk(cudaMemcpy(pmf, pmf_h, sizeof(BaseGrid), cudaMemcpyHostToDevice));
pmf_h->val = NULL;
}
// Copy the diffusion grid
if (part[i].diffusionGrid != NULL) {
float *val = NULL;
size_t sz = sizeof(float) * part[i].diffusionGrid->getSize();
BaseGrid *diffusionGrid_h = new BaseGrid(*part[i].diffusionGrid);
gpuErrchk(cudaMalloc(&diffusionGrid, sizeof(BaseGrid)));
gpuErrchk(cudaMalloc(&val, sz));
diffusionGrid_h->val = val;
gpuErrchk(cudaMemcpyAsync(diffusionGrid, diffusionGrid_h, sizeof(BaseGrid),
cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(val, part[i].diffusionGrid->val, sz, cudaMemcpyHostToDevice));
diffusionGrid_h->val = NULL;
}
b->pmf = pmf;
b->diffusionGrid = diffusionGrid;
gpuErrchk(cudaMalloc(&part_addr[i], sizeof(BrownianParticleType)));
gpuErrchk(cudaMemcpyAsync(part_addr[i], b, sizeof(BrownianParticleType),
cudaMemcpyHostToDevice));
}
// RBTODO: moved this out of preceding loop; was that correct?
gpuErrchk(cudaMemcpyAsync(part_d, part_addr, sizeof(BrownianParticleType*) * numParts,
cudaMemcpyHostToDevice));
if (temperatureGridFile.length() > 0) {
gpuErrchk(cudaMalloc(&kTGrid_d, sizeof(BaseGrid)));
gpuErrchk(cudaMemcpyAsync(kTGrid_d, kTGrid, sizeof(BaseGrid), cudaMemcpyHostToDevice));
}
// type_d and sys_d
gpuErrchk(cudaMalloc(&sys_d, sizeof(BaseGrid)));
gpuErrchk(cudaMemcpyAsync(sys_d, sys, sizeof(BaseGrid), cudaMemcpyHostToDevice));
eguzman6
committed
/*gpuErrchk(cudaMalloc(&type_d, sizeof(int) * num * simNum));
gpuErrchk(cudaMemcpyAsync(type_d, type, sizeof(int) * num * simNum, cudaMemcpyHostToDevice));
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
if (numBonds > 0) {
// bonds_d
gpuErrchk(cudaMalloc(&bonds_d, sizeof(Bond) * numBonds));
gpuErrchk(cudaMemcpyAsync(bonds_d, bonds, sizeof(Bond) * numBonds, cudaMemcpyHostToDevice));
// bondMap_d
gpuErrchk(cudaMalloc(&bondMap_d, sizeof(int2) * num));
gpuErrchk(cudaMemcpyAsync(bondMap_d, bondMap, sizeof(int2) * num, cudaMemcpyHostToDevice));
}
if (numExcludes > 0) {
// excludes_d
gpuErrchk(cudaMalloc(&excludes_d, sizeof(Exclude) * numExcludes));
gpuErrchk(cudaMemcpyAsync(excludes_d, excludes, sizeof(Exclude) * numExcludes,
cudaMemcpyHostToDevice));
// excludeMap_d
gpuErrchk(cudaMalloc(&excludeMap_d, sizeof(int2) * num));
gpuErrchk(cudaMemcpyAsync(excludeMap_d, excludeMap, sizeof(int2) * num,
cudaMemcpyHostToDevice));
}
if (numAngles > 0) {
// angles_d
gpuErrchk(cudaMalloc(&angles_d, sizeof(Angle) * numAngles));
gpuErrchk(cudaMemcpyAsync(angles_d, angles, sizeof(Angle) * numAngles,
cudaMemcpyHostToDevice));
}
if (numDihedrals > 0) {
// dihedrals_d
gpuErrchk(cudaMalloc(&dihedrals_d, sizeof(Dihedral) * numDihedrals));
gpuErrchk(cudaMemcpyAsync(dihedrals_d, dihedrals,
sizeof(Dihedral) * numDihedrals,
cudaMemcpyHostToDevice));
eguzman6
committed
}*/
gpuErrchk(cudaDeviceSynchronize());
}
void Configuration::setDefaults() {
// System parameters
cmaffeo2
committed
rigidBodyGridGridPeriod = 1;
steps = 100;
seed = 0;
inputCoordinates = "";
restartCoordinates = "";
numberFluct = 0;
numberFluctPeriod = 200;
interparticleForce = 1;
tabulatedPotential = 0;
fullLongRange = 1;
// kTGridFile = ""; // Commented out for an unknown reason
temperature = 295.0f;
temperatureGridFile = "";
coulombConst = 566.440698f/92.0f;
electricField = 0.0f;
cutoff = 10.0f;
switchLen = 2.0f;
pairlistDistance = 2.0f;
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
outputPeriod = 200;
outputEnergyPeriod = -1;
outputFormat = TrajectoryWriter::formatDcd;
currentSegmentZ = -1.0f;
numCap = 0;
decompPeriod = 10;
readPartsFromFile = 0;
numPartsFromFile = 0;
partsFromFile = NULL;
readBondsFromFile = false;
numBonds = 0;
bonds = NULL;
bondMap = NULL;
numTabBondFiles = 0;
readExcludesFromFile = false;
numExcludes = 0;
excludeCapacity = 256;
excludes = NULL;
excludeMap = NULL;
excludeRule = "";
readAnglesFromFile = false;
numAngles = 0;
angles = NULL;
numTabAngleFiles = 0;
readDihedralsFromFile = false;
numDihedrals = 0;
dihedrals = NULL;
numTabDihedralFiles = 0;
// Hidden parameters
// Might be parameters later
numCapFactor = 5;
}
int Configuration::readParameters(const char * config_file) {
Reader config(config_file);
printf("Read config file %s\n", config_file);
// Get the number of particles.
const int numParams = config.length();
numParts = config.countParameter("particle");
numRigidTypes = config.countParameter("rigidBody");
// Allocate the particle variables.
part = new BrownianParticleType[numParts];
partGridFile = new String[numParts];
partForceXGridFile = new String[numParts];
partForceYGridFile = new String[numParts];
partForceZGridFile = new String[numParts];
partDiffusionGridFile = new String[numParts];
partReservoirFile = new String[numParts];
partRigidBodyGrid.resize(numParts);
// Allocate the table variables.
partTableFile = new String[numParts*numParts];
partTableIndex0 = new int[numParts*numParts];
partTableIndex1 = new int[numParts*numParts];
// Allocate rigid body types
rigidBody = new RigidBodyType[numRigidTypes];
int btfcap = 10;
bondTableFile = new String[btfcap];
int atfcap = 10;
angleTableFile = new String[atfcap];
int dtfcap = 10;
dihedralTableFile = new String[dtfcap];
int currPart = -1;
int currTab = -1;
int currBond = -1;
int currAngle = -1;
int currDihedral = -1;
int currRB = -1;
int partClassPart = 0;
int partClassRB = 1;
int currPartClass = -1; // 0 => particle, 1 => rigidBody
for (int i = 0; i < numParams; i++) {
String param = config.getParameter(i);
String value = config.getValue(i);
if (param == String("outputName"))
outputName = value;
else if (param == String("timestep"))
timestep = (float) strtod(value.val(), NULL);
cmaffeo2
committed
else if (param == String("rigidBodyGridGridPeriod"))
rigidBodyGridGridPeriod = atoi(value.val());
else if (param == String("steps"))
steps = atol(value.val());
else if (param == String("seed"))
seed = atoi(value.val());
else if (param == String("inputCoordinates"))
inputCoordinates = value;
else if (param == String("restartCoordinates"))
restartCoordinates = value;
else if (param == String("temperature"))
temperature = (float) strtod(value.val(),NULL);
temperatureGridFile = value;
else if (param == String("numberFluct"))
numberFluct = atoi(value.val());
else if (param == String("numberFluctPeriod"))
numberFluctPeriod = atoi(value.val());
else if (param == String("interparticleForce"))
interparticleForce = atoi(value.val());
else if (param == String("fullLongRange") || param == String("fullElect") )
fullLongRange = atoi(value.val());
else if (param == String("coulombConst"))
coulombConst = (float) strtod(value.val(), NULL);
else if (param == String("electricField"))
electricField = (float) strtod(value.val(), NULL);
else if (param == String("cutoff"))
cutoff = (float) strtod(value.val(), NULL);
else if (param == String("switchLen"))
switchLen = (float) strtod(value.val(), NULL);
else if (param == String("pairlistDistance"))
pairlistDistance = (float) strtod(value.val(), NULL);
else if (param == String("outputPeriod"))
outputPeriod = atoi(value.val());
else if (param == String("outputEnergyPeriod"))
outputEnergyPeriod = atoi(value.val());
else if (param == String("outputFormat"))
outputFormat = TrajectoryWriter::getFormatCode(value);
else if (param == String("currentSegmentZ"))
currentSegmentZ = (float) strtod(value.val(), NULL);
else if (param == String("numCap"))
numCap = atoi(value.val());
else if (param == String("decompPeriod"))
decompPeriod = atoi(value.val());
// PARTICLES
else if (param == String("particle")) {
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
else if (param == String("forceXGridFile"))
partForceXGridFile[currPart] = value;
else if (param == String("forceYGridFile"))
partForceYGridFile[currPart] = value;
else if (param == String("forceZGridFile"))
partForceZGridFile[currPart] = value;
else if (param == String("diffusionGridFile"))
partDiffusionGridFile[currPart] = value;
else if (param == String("diffusion"))
part[currPart].diffusion = (float) strtod(value.val(), NULL);
else if (param == String("charge"))
part[currPart].charge = (float) strtod(value.val(), NULL);
else if (param == String("radius"))
part[currPart].radius = (float) strtod(value.val(), NULL);
else if (param == String("eps"))
part[currPart].eps = (float) strtod(value.val(), NULL);
else if (param == String("reservoirFile"))
partReservoirFile[currPart] = value;
else if (param == String("tabulatedPotential"))
tabulatedPotential = atoi(value.val());
else if (param == String("tabulatedFile"))
readTableFile(value, ++currTab);
else if (param == String("tabulatedBondFile")) {
if (numTabBondFiles >= btfcap) {
String* temp = bondTableFile;
btfcap *= 2;
bondTableFile = new String[btfcap];
for (int j = 0; j < numTabBondFiles; j++)
bondTableFile[i] = temp[i];
delete[] temp;
}
if (readBondFile(value, ++currBond))
numTabBondFiles++;
} else if (param == String("inputParticles")) {
if (readPartsFromFile) {
printf("WARNING: More than one particle file specified. Discarding new file.\n");
} else {
partFile = value;
readPartsFromFile = true;
loadedCoordinates = true;
}
} else if (param == String("inputBonds")) {
if (readBondsFromFile) {
printf("WARNING: More than one bond file specified. Discarding new bond file.\n");
} else {
bondFile = value;
readBondsFromFile = true;
}
} else if (param == String("inputExcludes")) {
if (readExcludesFromFile) {
printf("WARNING: More than one exclude file specified. Discarding new exclude file.\n");
} else {
excludeFile = value;
readExcludesFromFile = true;
}
} else if (param == String("exclude") or param == String("exclusion")) {
excludeRule = value;
} else if (param == String("inputAngles")) {
if (readAnglesFromFile) {
printf("WARNING: More than one angle file specified. Discarding new angle file.\n");
} else {
angleFile = value;
readAnglesFromFile = true;
}
} else if (param == String("tabulatedAngleFile")) {
if (numTabAngleFiles >= atfcap) {
String* temp = angleTableFile;
atfcap *= 2;
angleTableFile = new String[atfcap];
for (int j = 0; j < numTabAngleFiles; j++)
angleTableFile[i] = temp[i];
delete[] temp;
}
if (readAngleFile(value, ++currAngle))
numTabAngleFiles++;
} else if (param == String("inputDihedrals")) {
if (readDihedralsFromFile) {
printf("WARNING: More than one dihedral file specified. Discarding new dihedral file.\n");
} else {
dihedralFile = value;
readDihedralsFromFile = true;
}
} else if (param == String("tabulatedDihedralFile")) {
if (numTabDihedralFiles >= dtfcap) {
String * temp = dihedralTableFile;
dtfcap *= 2;
dihedralTableFile = new String[dtfcap];
for (int j = 0; j < numTabDihedralFiles; j++)
dihedralTableFile[i] = temp[i];
delete[] temp;
}
if (readDihedralFile(value, ++currDihedral))
numTabDihedralFiles++;
} else if (param == String("rigidBodyPotential")) {
partRigidBodyGrid[currPart].push_back(value);
}
// RIGID BODY
else if (param == String("rigidBody")) {
// part[++currPart] = BrownianParticleType(value);
rigidBody[++currRB] = RigidBodyType(value, this);
currPartClass = partClassRB;
}
else if (param == String("mass"))
rigidBody[currRB].mass = (float) strtod(value.val(), NULL);
else if (param == String("inertia"))
rigidBody[currRB].inertia = stringToVector3( value );
else if (param == String("transDamping"))
rigidBody[currRB].transDamping = stringToVector3( value );
else if (param == String("rotDamping"))
rigidBody[currRB].rotDamping = stringToVector3( value );
else if (param == String("densityGrid"))
rigidBody[currRB].addDensityGrid(value);
else if (param == String("potentialGrid"))
rigidBody[currRB].addPotentialGrid(value);
else if (param == String("densityGridScale"))
rigidBody[currRB].scaleDensityGrid(value);
else if (param == String("potentialGridScale"))
rigidBody[currRB].scalePotentialGrid(value);
else if (param == String("pmfScale"))
rigidBody[currRB].scalePMF(value);
else if (param == String("position"))
rigidBody[currRB].initPos = stringToVector3( value );
else if (param == String("orientation"))
rigidBody[currRB].initRot = stringToMatrix3( value );
else if (param == String("inputRBCoordinates"))
inputRBCoordinates = value;
// COMMON
else if (param == String("num")) {
if (currPartClass == partClassPart)
part[currPart].num = atoi(value.val());
rigidBody[currRB].num = atoi(value.val());
}
else if (param == String("gridFile")) {
if (currPartClass == partClassPart)
partGridFile[currPart] = value;
else if (currPartClass == partClassRB)
rigidBody[currRB].addPMF(value);
}
cmaffeo2
committed
printf("ERROR: Unrecognized keyword `%s'.\n", param.val());
exit(1);
cmaffeo2
committed
// extra configuration for RB types
for (int i = 0; i < numRigidTypes; i++)
rigidBody[i].setDampingCoeffs(timestep);
Vector3 Configuration::stringToVector3(String s) {
// tokenize and return
int numTokens = s.tokenCount();
if (numTokens != 3) {
printf("ERROR: could not convert input to Vector3.\n"); // TODO improve this message
exit(1);
}
String* token = new String[numTokens];
s.tokenize(token);
Vector3 v( (float) strtod(token[0], NULL),
(float) strtod(token[1], NULL),
(float) strtod(token[2], NULL) );
return v;
}
Matrix3 Configuration::stringToMatrix3(String s) {
// tokenize and return
int numTokens = s.tokenCount();
if (numTokens != 9) {
printf("ERROR: could not convert input to Matrix3.\n"); // TODO improve this message
exit(1);
}
String* token = new String[numTokens];
s.tokenize(token);
Matrix3 m( (float) strtod(token[0], NULL),
(float) strtod(token[1], NULL),
(float) strtod(token[2], NULL),
(float) strtod(token[3], NULL),
(float) strtod(token[4], NULL),
(float) strtod(token[5], NULL),
(float) strtod(token[6], NULL),
(float) strtod(token[7], NULL),
(float) strtod(token[8], NULL) );
return m;
}
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
void Configuration::readAtoms() {
// Open the file
FILE* inp = fopen(partFile.val(), "r");
char line[256];
// If the particle file cannot be found, exit the program
if (inp == NULL) {
printf("ERROR: Could not open `%s'.\n", partFile.val());
bool found = true;
for (int i = 0; i < numParts; i++)
if (part[i].num == 0)
found = false;
if (!found) {
printf("ERROR: Number of particles not specified in config file.\n");
exit(1);
}
printf("Using default coordinates file\n");
return;
}
// Our particle array has a starting capacity of 256
// We will expand this later if we need to.
int capacity = 256;
numPartsFromFile = 0;
partsFromFile = new String[capacity];
indices = new int[capacity];
indices[0] = 0;
// Get and process all lines of input
while (fgets(line, 256, inp) != NULL) {
// Lines in the particle file that begin with # are comments
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate ATOM input lines have 6 tokens:
// ATOM | Index | Name | X-coord | Y-coord | Z-coord
// A line without exactly six tokens should be discarded.
if (numTokens != 6) {
printf("Warning: Invalid particle file line: %s\n", line);
return;
}
// Ensure that this particle's type was defined in the config file.
// If not, discard this line.
bool found;
for (int j = 0; j < numParts; j++) {
// If this particle type exists, add a new one to the list
if (part[j].name == tokenList[2]) {
found = true;
part[j].num++;
}
}
// If the particle's type does not exist according to the config file, discard it.
if (!found) {
printf("WARNING Unknown particle type %s found and discarded.\n", tokenList[2].val());
continue;
}
// If we don't have enough room in our particle array, we need to expand it.
if (numPartsFromFile >= capacity) {
// Temporary pointers to the old arrays
String* temp = partsFromFile;
int* temp2 = indices;
// Double the capacity
capacity *= 2;
// Create pointers to new arrays which are twice the size of the old ones
partsFromFile = new String[capacity];
indices = new int[capacity];
// Copy the old values into the new arrays
for (int j = 0; j < numPartsFromFile; j++) {
partsFromFile[j] = temp[j];
indices[j] = temp2[j];
}
// delete the old arrays
delete[] temp;
delete[] temp2;
}
// Make sure the index of this particle is unique.
// NOTE: The particle list is sorted by index.
bool uniqueID = true;
int key = atoi(tokenList[1].val());
int mid = 0;
// If the index is greater than the last index in the list,
// this particle belongs at the end of the list. Since the
// list is kept sorted, we know this is okay.
if (numPartsFromFile == 0 || key > indices[numPartsFromFile - 1]) {
indices[numPartsFromFile] = key;
partsFromFile[numPartsFromFile++] = line;
}
// We need to do a binary search to figure out if
// the index already exists in the list.
// The assumption is that input files SHOULD have their indices sorted in
// ascending order, so we shouldn't actually use the binary search
// or the sort (which is pretty time consuming) very often.
else {
int low = 0, high = numPartsFromFile - 1;
while (low <= high) {
mid = (int)((high - low) / 2 + low);
int curr = indices[mid];
if (curr < key) {
low = mid + 1;
} else if (curr > key) {
high = mid - 1;
} else {
// For now, particles with non-unique IDs are simply not added to the array
// Other possible approaches which are not yet implemented:
// 1: Keep track of these particles and assign them new IDs after you have
// already added all of the other particles.
// 2: Get rid of ALL particles with that ID, even the ones that have already
// been added.
printf("WARNING: Non-unique ID found: %s\n", line);
uniqueID = false;
break;
}
}
if (uniqueID) {
// Add the particle to the end of the array, then sort it.
indices[numPartsFromFile] = key;
partsFromFile[numPartsFromFile++] = line;
std::sort(indices, indices + numPartsFromFile);
std::sort(partsFromFile, partsFromFile + numPartsFromFile, compare());
}
}
}
}
void Configuration::readBonds() {
// Open the file
FILE* inp = fopen(bondFile.val(), "r");
char line[256];
// If the particle file cannot be found, exit the program
if (inp == NULL) {
printf("WARNING: Could not open `%s'.\n", bondFile.val());
printf(" This simulation will not use particle bonds.\n");
return;
}
// Our particle array has a starting capacity of 256
// We will expand this later if we need to.
int capacity = 256;
numBonds = 0;
bonds = new Bond[capacity];
// Get and process all lines of input
while (fgets(line, 256, inp) != NULL) {
// Lines in the particle file that begin with # are comments
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate BOND input lines have 4 tokens:
// BOND | OPERATION_FLAG | INDEX1 | INDEX2 | FILENAME
// A line without exactly five tokens should be discarded.
if (numTokens != 5) {
printf("WARNING: Invalid bond file line: %s\n", line);
continue;
}
String op = tokenList[1];
int ind1 = atoi(tokenList[2].val());
int ind2 = atoi(tokenList[3].val());
String file_name = tokenList[4];
if (ind1 == ind2) {
printf("WARNING: Invalid bond file line: %s\n", line);
continue;
}
// If we don't have enough room in our bond array, we need to expand it.
if (numBonds+1 >= capacity) { // "numBonds+1" because we are adding two bonds to array
// Temporary pointer to the old array
Bond* temp = bonds;
// Double the capacity
capacity *= 2;
// Create pointer to new array which is twice the size of the old one
bonds = new Bond[capacity];
// Copy the old values into the new array
for (int j = 0; j < numBonds; j++)
bonds[j] = temp[j];
// delete the old array
delete[] temp;
}
// Add the bond to the bond array
// We must add it twice: Once for (ind1, ind2) and once for (ind2, ind1)
// RBTODO: add ind1/2 to exclusion list here iff op == REPLACE
/*if (op == Bond::REPLACE)
if( (int)(op) == 1)
{
printf("WARNING: Bond exclusions not implemented\n");
continue;
}*/
if (ind1 < 0 || ind1 >= num || ind2 < 0 || ind2 >=num) {
printf("ERROR: Bond file line '%s' includes invalid index\n", line);
exit(1);
}
Bond* b = new Bond(op, ind1, ind2, file_name);
bonds[numBonds++] = *b;
b = new Bond(op, ind2, ind1, file_name);
bonds[numBonds++] = *b;
delete[] tokenList;
}
// Call compareBondIndex with qsort to sort the bonds by BOTH ind1 AND ind2
std::sort(bonds, bonds + numBonds, compare());
/* Each particle may have a varying number of bonds
* bondMap is an array with one element for each particle
* which keeps track of where a particle's bonds are stored
* in the bonds array.
* bondMap[i].x is the index in the bonds array where the ith particle's bonds begin
* bondMap[i].y is the index in the bonds array where the ith particle's bonds end
*/
bondMap = new int2[num];
for (int i = 0; i < num; i++) {
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
bondMap[i].x = -1;
bondMap[i].y = -1;
}
int currPart = -1;
int lastPart = -1;
for (int i = 0; i < numBonds; i++) {
if (bonds[i].ind1 != currPart) {
currPart = bonds[i].ind1;
bondMap[currPart].x = i;
if (lastPart >= 0) bondMap[lastPart].y = i;
lastPart = currPart;
}
}
if (bondMap[lastPart].x > 0)
bondMap[lastPart].y = numBonds;
}
void Configuration::readExcludes()
{
// Open the file
FILE* inp = fopen(excludeFile.val(), "r");
char line[256];
// If the exclusion file cannot be found, exit the program
if (inp == NULL) {
printf("WARNING: Could not open `%s'.\n", excludeFile.val());
printf("This simulation will not use exclusions.\n");
return;
}
// Our particle array has a starting capacity of 256
// We will expand this later if we need to.
excludeCapacity = 256;
numExcludes = 0;
excludes = new Exclude[excludeCapacity];
// Get and process all lines of input
while (fgets(line, 256, inp) != NULL) {
// Lines in the particle file that begin with # are comments
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
// Break the line down into pieces (tokens) so we can process them individually
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate EXCLUDE input lines have 3 tokens:
// BOND | INDEX1 | INDEX2
// A line without exactly three tokens should be discarded.
if (numTokens != 3) {
printf("WARNING: Invalid exclude file line: %s\n", line);
continue;
}
int ind1 = atoi(tokenList[1].val());
int ind2 = atoi(tokenList[2].val());
if (ind1 >= num || ind2 >= num)
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
continue;
// If we don't have enough room in our bond array, we need to expand it.
if (numExcludes >= excludeCapacity) {
// Temporary pointer to the old array
Exclude* temp = excludes;
// Double the capacity
excludeCapacity *= 2;
// Create pointer to new array which is twice the size of the old one
excludes = new Exclude[excludeCapacity];
// Copy the old values into the new array
for (int j = 0; j < numExcludes; j++)
excludes[j] = temp[j];
// delete the old array
delete[] temp;
}
// Add the bond to the exclude array
// We must add it twice: Once for (ind1, ind2) and once for (ind2, ind1)
Exclude ex(ind1, ind2);
excludes[numExcludes++] = ex;
Exclude ex2(ind2, ind1);
excludes[numExcludes++] = ex2;
delete[] tokenList;
}
// Call compareExcludeIndex with qsort to sort the excludes by BOTH ind1 AND ind2
std::sort(excludes, excludes + numExcludes, compare());
/* Each particle may have a varying number of excludes
* excludeMap is an array with one element for each particle
* which keeps track of where a particle's excludes are stored
* in the excludes array.
* excludeMap[i].x is the index in the excludes array where the ith particle's excludes begin
* excludeMap[i].y is the index in the excludes array where the ith particle's excludes end
*/
excludeMap = new int2[num];
for (int i = 0; i < num; i++) {
excludeMap[i].x = -1;
excludeMap[i].y = -1;
}
int currPart = -1;
int lastPart = -1;
for (int i = 0; i < numExcludes; i++) {
if (excludes[i].ind1 != currPart) {
currPart = excludes[i].ind1;
if (currPart < num) {
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
excludeMap[currPart].x = i;
if (lastPart >= 0)
excludeMap[lastPart].y = i;
lastPart = currPart;
}
}
}
}
void Configuration::readAngles() {
FILE* inp = fopen(angleFile.val(), "r");
char line[256];
int capacity = 256;
numAngles = 0;
angles = new Angle[capacity];
// If the angle file cannot be found, exit the program
if (inp == NULL) {
printf("WARNING: Could not open `%s'.\n", angleFile.val());
printf("This simulation will not use angles.\n");
return;
}
while(fgets(line, 256, inp)) {
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate ANGLE inputs have 5 tokens
// ANGLE | INDEX1 | INDEX2 | INDEX3 | FILENAME
// Any angle input line without exactly 5 tokens should be discarded
if (numTokens != 5) {
printf("WARNING: Invalid angle input line: %s\n", line);
continue;
}
// Discard any empty line
if (tokenList == NULL)
continue;
int ind1 = atoi(tokenList[1].val());
int ind2 = atoi(tokenList[2].val());
int ind3 = atoi(tokenList[3].val());
String file_name = tokenList[4];
//printf("file_name %s\n", file_name.val());
if (ind1 >= num or ind2 >= num or ind3 >= num)
continue;
if (numAngles >= capacity) {
Angle* temp = angles;
capacity *= 2;
angles = new Angle[capacity];
for (int i = 0; i < numAngles; i++)
angles[i] = temp[i];
delete[] temp;
}
Angle a(ind1, ind2, ind3, file_name);
angles[numAngles++] = a;
delete[] tokenList;
}
std::sort(angles, angles + numAngles, compare());
// for(int i = 0; i < numAngles; i++)
// angles[i].print();
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
}
void Configuration::readDihedrals() {
FILE* inp = fopen(dihedralFile.val(), "r");
char line[256];
int capacity = 256;
numDihedrals = 0;
dihedrals = new Dihedral[capacity];
// If the dihedral file cannot be found, exit the program
if (inp == NULL) {
printf("WARNING: Could not open `%s'.\n", dihedralFile.val());
printf("This simulation will not use dihedrals.\n");
return;
}
while(fgets(line, 256, inp)) {
if (line[0] == '#') continue;
String s(line);
int numTokens = s.tokenCount();
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
// Legitimate DIHEDRAL inputs have 6 tokens
// DIHEDRAL | INDEX1 | INDEX2 | INDEX3 | INDEX4 | FILENAME
// Any angle input line without exactly 6 tokens should be discarded
if (numTokens != 6) {
printf("WARNING: Invalid dihedral input line: %s\n", line);
continue;
}
// Discard any empty line
if (tokenList == NULL)
continue;
int ind1 = atoi(tokenList[1].val());
int ind2 = atoi(tokenList[2].val());
int ind3 = atoi(tokenList[3].val());
int ind4 = atoi(tokenList[4].val());
String file_name = tokenList[5];
//printf("file_name %s\n", file_name.val());
if (ind1 >= num or ind2 >= num
or ind3 >= num or ind4 >= num)
continue;
if (numDihedrals >= capacity) {
Dihedral* temp = dihedrals;
capacity *= 2;
dihedrals = new Dihedral[capacity];
for (int i = 0; i < numDihedrals; ++i)
dihedrals[i] = temp[i];
delete[] temp;
}
Dihedral d(ind1, ind2, ind3, ind4, file_name);
dihedrals[numDihedrals++] = d;
delete[] tokenList;
}
std::sort(dihedrals, dihedrals + numDihedrals, compare());
// for(int i = 0; i < numDihedrals; i++)
// dihedrals[i].print();
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
}
void Configuration::populate() {
int pn = 0;
int p = 0;
for (int i = 0; i < num; i++) {
for (int s = 0; s < simNum; ++s)
type[i + s*num] = p;
serial[i] = currSerial++;
if (++pn >= part[p].num) {
p++;
pn = 0;
}
}
}
bool Configuration::readBondFile(const String& value, int currBond) {
int numTokens = value.tokenCount();
if (numTokens != 1) {
printf("ERROR: Invalid tabulatedBondFile: %s, numTokens = %d\n", value.val(), numTokens);
return false;
}
String* tokenList = new String[numTokens];
value.tokenize(tokenList);
if (tokenList == NULL) {
printf("ERROR: Invalid tabulatedBondFile: %s; tokenList is NULL\n", value.val());
return false;
}
bondTableFile[currBond] = tokenList[0];
printf("Tabulated Bond Potential: %s\n", bondTableFile[currBond].val() );
return true;
}
bool Configuration::readAngleFile(const String& value, int currAngle) {
int numTokens = value.tokenCount();
if (numTokens != 1) {
printf("ERROR: Invalid tabulatedAngleFile: %s, numTokens = %d\n", value.val(), numTokens);
return false;
}
String* tokenList = new String[numTokens];
value.tokenize(tokenList);
if (tokenList == NULL) {
printf("ERROR: Invalid tabulatedAngleFile: %s; tokenList is NULL\n", value.val());
return false;
}
angleTableFile[currAngle] = tokenList[0];
printf("Tabulated Angle Potential: %s\n", angleTableFile[currAngle].val() );
return true;
}
bool Configuration::readDihedralFile(const String& value, int currDihedral) {
int numTokens = value.tokenCount();
if (numTokens != 1) {
printf("ERROR: Invalid tabulatedDihedralFile: %s, numTokens = %d\n", value.val(), numTokens);
return false;
}
String* tokenList = new String[numTokens];
value.tokenize(tokenList);
if (tokenList == NULL) {
printf("ERROR: Invalid tabulatedDihedralFile: %s; tokenList is NULL\n", value.val());
return false;
}
dihedralTableFile[currDihedral] = tokenList[0];
printf("Tabulated Dihedral Potential: %s\n", dihedralTableFile[currDihedral].val() );
return true;
}
void Configuration::loadRestart(const char* file_name) {
char line[STRLEN];
FILE* inp = fopen(file_name, "r");
if (inp == NULL) {
printf("GrandBrownTown:loadRestart File `%s' does not exist\n", file_name);
exit(-1);
}
int count = 0;
while (fgets(line, STRLEN, inp) != NULL) {
// Ignore comments.
int len = strlen(line);
if (line[0] == '#') continue;
if (len < 2) continue;
String s(line);
int numTokens = s.tokenCount();
if (numTokens != 4) {
printf("GrandBrownTown:loadRestart Invalid coordinate file line: %s\n", line);
fclose(inp);
exit(-1);
}
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
if (tokenList == NULL) {
printf("GrandBrownTown:loadRestart Invalid coordinate file line: %s\n", line);
fclose(inp);
exit(-1);
}
int typ = atoi(tokenList[0]);
float x = (float) strtod(tokenList[1],NULL);
float y = (float) strtod(tokenList[2],NULL);
float z = (float) strtod(tokenList[3],NULL);
pos[count] = Vector3(x,y,z);
type[count] = typ;
serial[count] = currSerial;
currSerial++;
if (typ < 0 || typ >= numParts) {
printf("GrandBrownTown:countRestart Invalid particle type: %d\n", typ);
fclose(inp);
exit(-1);
}
count++;
delete[] tokenList;
}
fclose(inp);
}
bool Configuration::loadCoordinates(const char* file_name) {
char line[STRLEN];
FILE* inp = fopen(file_name, "r");
if (inp == NULL) return false;
int count = 0;
while (fgets(line, STRLEN, inp) != NULL) {
// Ignore comments.
int len = strlen(line);
if (line[0] == '#') continue;
if (len < 2) continue;
String s(line);
int numTokens = s.tokenCount();
if (numTokens != 3) {
printf("ERROR: Invalid coordinate file line: %s\n", line);
fclose(inp);
return false;
}
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
if (tokenList == NULL) {
printf("ERROR: Invalid coordinate file line: %s\n", line);
fclose(inp);
return false;
}
if (count >= num) {
printf("WARNING: Too many coordinates in coordinate file %s.\n", file_name);
fclose(inp);
return true;
}
float x = (float) strtod(tokenList[0],NULL);
float y = (float) strtod(tokenList[1],NULL);
float z = (float) strtod(tokenList[2],NULL);
pos[count] = Vector3(x,y,z);
count++;
delete[] tokenList;
}
fclose(inp);
if (count < num) {
printf("ERROR: Too few coordinates in coordinate file.\n");
return false;
}
return true;
}
// Count the number of atoms in the restart file.
int Configuration::countRestart(const char* file_name) {
char line[STRLEN];
FILE* inp = fopen(file_name, "r");
if (inp == NULL) {
printf("ERROR: countRestart File `%s' does not exist\n", file_name);
exit(-1);
}
int count = 0;
while (fgets(line, STRLEN, inp) != NULL) {
int len = strlen(line);
// Ignore comments.
if (line[0] == '#') continue;
if (len < 2) continue;
String s(line);
int numTokens = s.tokenCount();
if (numTokens != 4) {
printf("ERROR: countRestart Invalid coordinate file line: %s\n", line);
fclose(inp);
exit(-1);
}
String* tokenList = new String[numTokens];
s.tokenize(tokenList);
if (tokenList == NULL) {
printf("ERROR: countRestart Invalid coordinate file line: %s\n", line);
fclose(inp);
exit(-1);
}
int typ = atoi(tokenList[0]);
// float x = strtod(tokenList[1],NULL);
// float y = strtod(tokenList[2],NULL);
// float z = strtod(tokenList[3],NULL);
if (typ < 0 || typ >= numParts) {
printf("ERROR: countRestart Invalid particle type: %d\n", typ);
fclose(inp);
exit(-1);
}
count++;
delete[] tokenList;
}
fclose(inp);
return count;
}
bool Configuration::readTableFile(const String& value, int currTab) {
int numTokens = value.tokenCount('@');
if (numTokens != 3) {
printf("ERROR: Invalid tabulatedFile: %s\n", value.val());
return false;
}
String* tokenList = new String[numTokens];
value.tokenize(tokenList, '@');
if (tokenList == NULL) {
printf("ERROR: Invalid tabulatedFile: %s\n", value.val());
return false;
}
partTableIndex0[currTab] = atoi(tokenList[0]);
partTableIndex1[currTab] = atoi(tokenList[1]);
partTableFile[currTab] = tokenList[2];
printf("tabulatedPotential: %d %d %s\n", partTableIndex0[currTab],
partTableIndex1[currTab], partTableFile[currTab].val() );
delete[] tokenList;
return true;
}
void Configuration::getDebugForce() {
// Allow the user to choose which force computation to use
printf("\n");
printf("(1) ComputeFull [Default] (2) ComputeSoftcoreFull\n");
printf("(3) ComputeElecFull (4) Compute (Decomposed)\n");
printf("(5) ComputeTabulated (Decomposed) (6) ComputeTabulatedFull\n");
printf("WARNING: ");
if (tabulatedPotential) {
if (fullLongRange) printf("(6) was specified by config file\n");
else printf("(5) was specified by config file\n");
} else {
if (fullLongRange != 0) printf("(%d) was specified by config file\n", fullLongRange);
else printf("(4) was specified by config file\n");
}
char buffer[256];
int choice;
while (true) {
printf("Choose a force computation (1 - 6): ");
fgets(buffer, 256, stdin);
bool good = sscanf(buffer, "%d", &choice) && (choice >= 1 && choice <= 6);
if (good)
break;
}
switch(choice) {
case 1:
tabulatedPotential = 0;
fullLongRange = 1;
break;
case 2:
tabulatedPotential = 0;
fullLongRange = 2;
break;
case 3:
tabulatedPotential = 0;
fullLongRange = 3;
break;
case 4:
tabulatedPotential = 0;
fullLongRange = 0;
break;
case 5:
tabulatedPotential = 1;
fullLongRange = 0;
break;
case 6:
tabulatedPotential = 1;
fullLongRange = 1;
break;
default:
tabulatedPotential = 0;
fullLongRange = 1;
break;
}
printf("\n");
}
//////////////////////////
// Comparison operators //
//////////////////////////
bool Configuration::compare::operator()(const String& lhs, const String& rhs) {
String* list_lhs = new String[lhs.tokenCount()];
String* list_rhs = new String[rhs.tokenCount()];
lhs.tokenize(list_lhs);
rhs.tokenize(list_rhs);
int key_lhs = atoi(list_lhs[1].val());
int key_rhs = atoi(list_rhs[1].val());
delete[] list_lhs;
delete[] list_rhs;
return key_lhs < key_rhs;
}
bool Configuration::compare::operator()(const Bond& lhs, const Bond& rhs) {
int diff = lhs.ind1 - rhs.ind1;
if (diff != 0)
return lhs.ind1 < rhs.ind1;
return lhs.ind2 < rhs.ind2;
}
bool Configuration::compare::operator()(const Exclude& lhs, const Exclude& rhs) {
int diff = lhs.ind1 - rhs.ind1;
if (diff != 0)
return lhs.ind1 < rhs.ind1;
return lhs.ind2 < rhs.ind2;
}
bool Configuration::compare::operator()(const Angle& lhs, const Angle& rhs) {
int diff = lhs.ind1 - rhs.ind1;
if (diff != 0)
return lhs.ind1 < rhs.ind1;
diff = lhs.ind2 - rhs.ind2;
if (diff != 0)
return lhs.ind2 < rhs.ind2;
return lhs.ind3 < rhs.ind3;
}
bool Configuration::compare::operator()(const Dihedral& lhs, const Dihedral& rhs) {
int diff = lhs.ind1 - rhs.ind1;
if (diff != 0)
return lhs.ind1 < rhs.ind1;
diff = lhs.ind2 - rhs.ind2;
if (diff != 0)
return lhs.ind2 < rhs.ind2;
diff = lhs.ind3 - rhs.ind3;
if (diff != 0)
return lhs.ind3 < rhs.ind3;
return lhs.ind4 < rhs.ind4;
}