Skip to content
Snippets Groups Projects
Commit cb934865 authored by rachelmoan's avatar rachelmoan
Browse files

Making traj opt resolver more general

parent 764b2559
No related branches found
No related tags found
No related merge requests found
......@@ -3,34 +3,23 @@ import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
from casadi import *
from guided_mrmp.conflict_resolvers.local_resolver import LocalResolver
class TrajOptResolver(LocalResolver):
class TrajOptResolver():
"""
A class that resolves conflicts using trajectoy optimization.
"""
def __init__(self, conflicts, all_robots, dt, robot_radius, circle_obstacles,
rectangle_obstacles, rob_dist_weight, obs_dist_weight, time_weight):
"""
inputs:
- starts (list): starts for all robots in the traj opt problem
- goals (list): goals for all robots in the traj opt problem
"""
super.__init__(conflicts, all_robots, dt)
self.num_robots = len(all_robots)
self.starts = None
self.goals = None
def __init__(self, num_robots, robot_radius, starts, goals, circle_obstacles, rectangle_obstacles,
rob_dist_weight, obs_dist_weight, control_weight, time_weight):
self.num_robots = num_robots
self.starts = starts
self.goals = goals
self.circle_obs = circle_obstacles
self.rect_obs = rectangle_obstacles
self.rob_dist_weight = rob_dist_weight
self.obs_dist_weight = obs_dist_weight
self.control_weight =control_weight
self.time_weight = time_weight
self.robot_radius = MX(robot_radius)
# Set the starts and goals for the robots
self.starts = [r.current_position for r in all_robots]
# the goals should be some point in the near future ...
def dist(self, robot_position, circle):
"""
Returns the distance between a robot and a circle
......@@ -58,14 +47,19 @@ class TrajOptResolver(LocalResolver):
def log_normal_barrier(self, sigma, d, c):
return c*fmax(0, 2-(d/sigma))**2.5
def solve(self, num_control_intervals, initial_guess):
"""
Solves the trajectory optimization problem for the robots.
TODO: This will not work for generic dynamics. It only works for roomba model.
I don't know how to handle generic dynamics with casadi yet.
def problem_setup(self, N, x_range, y_range):
"""
Problem setup for the multi-robot collision resolution traj opt problem
inputs:
- N (int): number of control intervals
- x_range (tuple): range of x values
- y_range (tuple): range of y values
N = num_control_intervals
outputs:
- problem (dict): dictionary containing the optimization problem
and the decision variables
"""
opti = Opti() # Optimization problem
# ---- decision variables --------- #
......@@ -75,16 +69,15 @@ class TrajOptResolver(LocalResolver):
y = pos[1::2,:]
heading = X[self.num_robots*2:,:] # heading is the last value
circle_obs = DM(self.circle_obs) # make the obstacles casadi objects
U = opti.variable(self.num_robots*2, N) # control trajectory (v, omega)
vel = U[0::2,:]
omega = U[1::2,:]
T = opti.variable() # final time
# sum up the cost of distance to obstacles
# ---- obstacle setup ------------ #
circle_obs = DM(self.circle_obs) # make the obstacles casadi objects
# ------ Obstacle dist cost ------ #
# TODO:: Include rectangular obstacles
dist_to_other_obstacles = 0
for r in range(self.num_robots):
......@@ -92,88 +85,150 @@ class TrajOptResolver(LocalResolver):
for c in range(circle_obs.shape[0]):
circle = circle_obs[c, :]
d = self.dist(pos[2*r : 2*(r+1), k], circle)
dist_to_other_obstacles += self.apply_quadratic_barrier(self.robot_radius + circle[2] + 0.5, d, 1)
# dist_to_other_obstacles += self.log_normal_barrier(5, d, 5)
dist_to_other_obstacles += self.apply_quadratic_barrier(2*(self.robot_radius + circle[2]), d, 5)
# ------ Robot dist cost ------ #
dist_to_other_robots = 0
for k in range(N):
for r1 in range(self.num_robots):
for r2 in range(self.num_robots):
if r1 != r2:
# print(f"\n{r1} position1 = {pos[2*r1 : 2*(r1+1), k]}")
# print(f"{r2} position2 = {pos[2*r2 : 2*(r2+1), k]}")
# note: using norm 2 here gives an invalid num detected error.
# Must be the sqrt causing an issue
# d = norm_2(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) - 2*self.robot_radius
d = sumsqr(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k])
dist_to_other_robots += self.apply_quadratic_barrier(2*self.robot_radius+.5, d, 1)
dist_to_other_robots += self.apply_quadratic_barrier(2*self.robot_radius, d, 1)
# ---- dynamics constraints ---- #
dt = T/N # length of a control interval
# Ensure that the robot moves according to the dynamics
pi = [3.14159]*self.num_robots
pi = np.array(pi)
pi = DM(pi)
for k in range(N): # loop over control intervals
dxdt = vel[:,k] * cos(heading[:,k])
dydt = vel[:,k] * sin(heading[:,k])
dthetadt = omega[:,k]
opti.subject_to(x[:,k+1]==x[:,k] + dt*dxdt)
opti.subject_to(y[:,k+1]==y[:,k] + dt*dydt)
opti.subject_to(heading[:,k+1]==heading[:,k] + dt*dthetadt)
opti.subject_to(heading[:,k+1]==fmod(heading[:,k] + dt*dthetadt, 2*pi))
# ------ Control panalty ------ #
# Calculate the sum of squared differences between consecutive heading angles
heading_diff_penalty = 0
for k in range(N-1):
heading_diff_penalty += sumsqr(fmod(heading[:,k+1] - heading[:,k] + pi, 2*pi) - pi)
# ------ cost function ------ #
opti.minimize(self.rob_dist_weight*dist_to_other_robots
+ self.obs_dist_weight*dist_to_other_obstacles
+ self.time_weight*T)
+ self.obs_dist_weight*dist_to_other_obstacles
+ self.time_weight*T
+ self.control_weight*heading_diff_penalty)
# --- v and omega constraints --- #
# ------ control constraints ------ #
for k in range(N):
for r in range(self.num_robots):
opti.subject_to(sumsqr(vel[r,k]) <= 0.2**2)
opti.subject_to(sumsqr(omega[r,k]) <= 0.1**2)
opti.subject_to(sumsqr(omega[r,k]) <= 0.2**2)
# --- position constraints --- #
opti.subject_to(opti.bounded(0,x,10))
opti.subject_to(opti.bounded(0,y,10))
# ------ bound x, y, and time ------ #
opti.subject_to(opti.bounded(x_range[0],x,x_range[1]))
opti.subject_to(opti.bounded(y_range[0],y,y_range[1]))
opti.subject_to(opti.bounded(0,T,100))
# ---- start/goal conditions --------
# ------ initial conditions ------ #
for r in range(self.num_robots):
# opti.subject_to(vel[r, 0]==0)
opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r])
opti.subject_to(heading[r, 0]==self.starts[r][2])
opti.subject_to(pos[2*r : 2*(r+1), 0]==self.starts[r][0:2])
opti.subject_to(pos[2*r : 2*(r+1), -1]==self.goals[r])
# ---- misc. constraints ----------
opti.subject_to(opti.bounded(0,T,100))
return {'opti':opti, 'X':X, 'T':T}
# ---- initial values for solver ---
opti.set_initial(T, 20)
def solve_optimization_problem(self, problem, initial_guesses=None, solver_options=None):
opti = problem['opti']
if initial_guess is not None:
opti.set_initial(pos,initial_guess)
# ---- solve NLP ------
opti.solver("ipopt") # set numerical backend
sol = opti.solve() # actual solve
if initial_guesses:
for param, value in initial_guesses.items():
print(f"param = {param}")
print(f"value = {value}")
opti.set_initial(problem[param], value)
# Set numerical backend, with options if provided
if solver_options:
opti.solver('ipopt', solver_options)
else:
opti.solver('ipopt')
try:
sol = opti.solve() # actual solve
status = 'succeeded'
except:
sol = None
status = 'failed'
results = {
'status' : status,
'solution' : sol,
}
if sol:
for var_name, var in problem.items():
if var_name != 'opti':
results[var_name] = sol.value(var)
return results
def solve(self, N, x_range, y_range, initial_guesses):
"""
Setup and solve a multi-robot traj opt problem
# print(f"pos = {opti.debug.value(pos[2:4,:])}")
input:
- N (int): the number of control intervals
- x_range (tuple):
- y_range (tuple):
"""
problem = self.problem_setup(N, x_range, y_range)
results = self.solve_optimization_problem(problem, initial_guesses)
return sol,pos
X = results['X']
sol = results['solution']
def get_local_controls(self):
# Extract the values that we want from the optimizer's solution
pos = X[:self.num_robots*2,:]
x_vals = pos[0::2,:]
y_vals = pos[1::2,:]
theta_vals = X[self.num_robots*2:,:]
return sol,pos, x_vals, y_vals, theta_vals
def get_local_controls(self, controls):
"""
Get the local controls for the robots in the conflict
"""
l = self.num_robots
final_trajs = [None]*l
for c in self.conflicts:
# Get the robots involved in the conflict
robots = [self.all_robots[r.label] for r in c]
robot_positions = [r.current_position for r in robots]
# Solve the trajectory optimization problem
initial_guess = None
sol, x_opt = self.solve(10, initial_guess)
sol, x_opt, vels, omegas, xs,ys = self.solve(20, initial_guess)
pos_vals = np.array(sol.value(x_opt))
# Update the controls for the robots
for r, pos in zip(robots, x_opt):
r.next_control = r.tracker.get_next_control(pos)
for r, vel, omega, x,y in zip(robots, vels, omegas, xs,ys):
controls[r.label] = [vel, omega]
final_trajs[r.label] = [x,y]
return controls, final_trajs
def plot_paths(self, x_opt):
fig, ax = plt.subplots()
......@@ -204,8 +259,8 @@ class TrajOptResolver(LocalResolver):
ax.legend()
ax.set_aspect('equal', 'box')
plt.ylim(0,10)
plt.xlim(0,10)
plt.ylim(0,640)
plt.xlim(0,480)
plt.title('Robot Paths')
plt.grid(False)
plt.show()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment