Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
db-guided-mrmp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rmoan2
db-guided-mrmp
Commits
1fcde4ed
Commit
1fcde4ed
authored
9 months ago
by
rachelmoan
Browse files
Options
Downloads
Patches
Plain Diff
Adding trajectory optimization for multiple robots
parent
c693f0c1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
LocalPlanners/TrajOpt.py
+204
-0
204 additions, 0 deletions
LocalPlanners/TrajOpt.py
with
204 additions
and
0 deletions
LocalPlanners/TrajOpt.py
0 → 100644
+
204
−
0
View file @
1fcde4ed
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.patches
import
Circle
,
Rectangle
from
casadi
import
*
class
TrajOptMultiRobot
():
def
__init__
(
self
,
num_robots
,
robot_radius
,
starts
,
goals
,
circle_obstacles
,
rectangle_obstacles
,
rob_dist_weight
,
obs_dist_weight
,
control_weight
,
time_weight
):
self
.
num_robots
=
num_robots
self
.
starts
=
starts
self
.
goals
=
goals
self
.
circle_obs
=
circle_obstacles
self
.
rect_obs
=
rectangle_obstacles
self
.
rob_dist_weight
=
rob_dist_weight
self
.
obs_dist_weight
=
obs_dist_weight
self
.
control_weight
=
control_weight
self
.
time_weight
=
time_weight
self
.
robot_radius
=
MX
(
robot_radius
)
def
dist
(
self
,
robot_position
,
circle
):
"""
Returns the distance between a robot and a circle
params:
robot_position [x,y]
circle [x,y,radius]
"""
return
norm_2
(
robot_position
-
transpose
(
circle
[:
2
]))
-
circle
[
2
]
-
self
.
robot_radius
def
apply_quadratic_barrier
(
self
,
d_max
,
d
,
c
):
"""
Applies a quadratic barrier to some given distance. The quadratic barrier
is a soft barrier function. We are using it for now to avoid any issues with
invalid initial solutions, which hard barrier functions cannot handle.
params:
d (float):
c (float): controls the steepness of curve.
higher c --> gets more expensive faster as you move toward obs
d_max (float):
"""
return
c
*
fmax
(
0
,
d_max
-
d
)
**
2
def
solve
(
self
,
num_control_intervals
):
N
=
num_control_intervals
opti
=
Opti
()
# Optimization problem
# ---- decision variables --------- #
X
=
opti
.
variable
(
self
.
num_robots
*
4
,
N
+
1
)
# state trajectory (x,y,v_x,v_y)
pos
=
X
[:
self
.
num_robots
*
2
,:]
# position is the first two values
vel
=
X
[
self
.
num_robots
*
2
:,:]
# velocity is the last two values
circle_obs
=
DM
(
self
.
circle_obs
)
# make the obstacles casadi objects
U
=
opti
.
variable
(
self
.
num_robots
*
2
,
N
)
# control trajectory (a_x, a_y)
T
=
opti
.
variable
()
# final time
# sum up the cost of distance to obstacles
# TODO:: Include rectangular obstacles
dist_to_other_obstacles
=
0
for
r
in
range
(
self
.
num_robots
):
for
k
in
range
(
N
):
for
c
in
range
(
circle_obs
.
shape
[
0
]):
circle
=
circle_obs
[
c
,
:]
d
=
self
.
dist
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
k
],
circle
)
dist_to_other_obstacles
+=
self
.
apply_quadratic_barrier
(
1
,
d
,
1
)
dist_to_other_robots
=
0
for
k
in
range
(
N
):
for
r1
in
range
(
self
.
num_robots
):
for
r2
in
range
(
self
.
num_robots
):
if
r1
!=
r2
:
# print(f"\n{r1} position1 = {pos[2*r1 : 2*(r1+1), k]}")
# print(f"{r2} position2 = {pos[2*r2 : 2*(r2+1), k]}")
# note: using norm 2 here gives an invalid num detected error.
# Must be the sqrt causing an issue
# d = norm_2(pos[2*r1 : 2*(r1+1), k] - pos[2*r2 : 2*(r2+1), k]) - 2*self.robot_radius
d
=
sumsqr
(
pos
[
2
*
r1
:
2
*
(
r1
+
1
),
k
]
-
pos
[
2
*
r2
:
2
*
(
r2
+
1
),
k
])
-
2
*
self
.
robot_radius
dist_to_other_robots
+=
self
.
apply_quadratic_barrier
(
5
,
d
,
2
)
# control costs
control_costs
=
0
dt
=
T
/
N
# length of a control interval
for
k
in
range
(
N
):
# loop over control intervals
opti
.
subject_to
(
pos
[:,
k
+
1
]
==
pos
[:,
k
]
+
dt
*
vel
[:,
k
])
opti
.
subject_to
(
vel
[:,
k
+
1
]
==
vel
[:,
k
]
+
dt
*
U
[:,
k
])
opti
.
minimize
(
dist_robots_weight
*
dist_to_other_robots
+
dist_obstacles_weight
*
dist_to_other_obstacles
+
control_costs_weight
*
control_costs
+
time_weight
*
T
)
# ---- path constraints -----------
for
k
in
range
(
N
):
for
r
in
range
(
self
.
num_robots
):
opti
.
subject_to
(
sumsqr
(
vel
[
2
*
r
:
2
*
(
r
+
1
),
k
])
<=
0.2
**
2
)
opti
.
subject_to
(
sumsqr
(
U
[
2
*
r
:
2
*
(
r
+
1
),
k
])
<=
0.1
**
2
)
opti
.
subject_to
(
opti
.
bounded
(
0
,
pos
,
10
))
# opti.subject_to(opti.bounded(-0.2,vel,0.2))
# opti.subject_to(opti.bounded(-.1,U,.1)) # control is limited
# ---- boundary conditions --------
for
r
in
range
(
self
.
num_robots
):
opti
.
subject_to
(
vel
[
2
*
r
:
2
*
(
r
+
1
),
0
]
==
[
0
,
0
])
opti
.
subject_to
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
0
]
==
self
.
starts
[
r
])
opti
.
subject_to
(
pos
[
2
*
r
:
2
*
(
r
+
1
),
-
1
]
==
self
.
goals
[
r
])
# ---- misc. constraints ----------
opti
.
subject_to
(
opti
.
bounded
(
0
,
T
,
100
))
# ---- initial values for solver ---
opti
.
set_initial
(
T
,
20
)
# ---- solve NLP ------
opti
.
solver
(
"
ipopt
"
)
# set numerical backend
sol
=
opti
.
solve
()
# actual solve
return
sol
,
pos
def
plot_paths
(
self
,
x_opt
):
fig
,
ax
=
plt
.
subplots
()
# Plot obstacles
for
obstacle
in
self
.
circle_obs
:
# if len(obstacle) == 2: # Circle
ax
.
add_patch
(
Circle
(
obstacle
,
obstacle
[
2
],
color
=
'
red
'
))
# elif len(obstacle) == 4: # Rectangle
# ax.add_patch(Rectangle((obstacle[0], obstacle[1]), obstacle[2], obstacle[3], color='red'))
if
self
.
num_robots
>
20
:
colors
=
plt
.
cm
.
hsv
(
np
.
linspace
(
0.2
,
1.0
,
self
.
num_robots
))
elif
self
.
num_robots
>
10
:
colors
=
plt
.
cm
.
tab20
(
np
.
linspace
(
0
,
1
,
self
.
num_robots
))
else
:
colors
=
plt
.
cm
.
tab10
(
np
.
linspace
(
0
,
1
,
self
.
num_robots
))
# Plot robot paths
for
r
,
color
in
zip
(
range
(
self
.
num_robots
),
colors
):
ax
.
plot
(
x_opt
[
r
*
2
,
:],
x_opt
[
r
*
2
+
1
,
:],
label
=
f
'
Robot
{
r
+
1
}
'
,
color
=
color
)
ax
.
scatter
(
x_opt
[
r
*
2
,
:],
x_opt
[
r
*
2
+
1
,
:],
color
=
color
,
s
=
10
)
ax
.
scatter
(
self
.
starts
[
r
][
0
],
self
.
starts
[
r
][
1
],
s
=
85
,
color
=
color
)
ax
.
scatter
(
self
.
goals
[
r
][
0
],
self
.
goals
[
r
][
1
],
s
=
85
,
facecolors
=
'
none
'
,
edgecolors
=
color
)
ax
.
set_xlabel
(
'
X
'
)
ax
.
set_ylabel
(
'
Y
'
)
ax
.
legend
()
ax
.
set_aspect
(
'
equal
'
,
'
box
'
)
plt
.
ylim
(
0
,
10
)
plt
.
xlim
(
0
,
10
)
plt
.
title
(
'
Robot Paths
'
)
plt
.
grid
(
False
)
plt
.
show
()
if
__name__
==
"
__main__
"
:
# define obstacles
circle_obs
=
np
.
array
([[
5
,
5
,
1
],
[
7
,
7
,
1
],
[
3
,
3
,
1
]])
rectangle_obs
=
np
.
array
([])
# define all the robots' starts and goals
robot_starts
=
[[
1
,
6
],[
9
,
5
],[
2
,
2
],[
1
,
3
]]
robot_goals
=
[[
9
,
6
],[
1
,
5
],[
8
,
8
],[
7
,
3
]]
# weights for the cost function
dist_robots_weight
=
1.0
dist_obstacles_weight
=
1.7
control_costs_weight
=
1.0
time_weight
=
1.0
# other params
num_robots
=
4
rob_radius
=
0.25
solver
=
TrajOptMultiRobot
(
num_robots
=
num_robots
,
robot_radius
=
rob_radius
,
starts
=
robot_starts
,
goals
=
robot_goals
,
circle_obstacles
=
circle_obs
,
rectangle_obstacles
=
rectangle_obs
,
rob_dist_weight
=
dist_robots_weight
,
obs_dist_weight
=
dist_obstacles_weight
,
control_weight
=
control_costs_weight
,
time_weight
=
time_weight
)
sol
,
pos
=
solver
.
solve
(
20
)
pos_vals
=
np
.
array
(
sol
.
value
(
pos
))
solver
.
plot_paths
(
pos_vals
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment