-
rachelmoan authoredrachelmoan authored
optimizer.py 4.26 KiB
class Optimizer:
def __init__(self, problem):
self.problem = problem
def solve_optimization_problem(self, initial_guesses=None, solver_options=None, lam_g=None):
opti = self.problem['opti']
X = self.problem['X']
U = self.problem['U']
if initial_guesses:
for param, value in initial_guesses.items():
opti.set_initial(self.problem[param], value)
if lam_g is not None:
opti.set_initial(opti.lam_g, lam_g)
# Set numerical backend, with options if provided
if solver_options:
opti.solver('ipopt', solver_options)
else:
opti.solver('ipopt')
def print_intermediates_callback(i):
# print the current value of the objective function
print("Iteration:", i, "Current cost cost:", opti.debug.value(self.problem['cost']))
print("Iteration:", i, "Current robot cost:", opti.debug.value(self.problem['dist_to_other_robots']))
# print("Iteration:", i, "Current obstacle cost:", opti.debug.value(self.problem['obs_cost']))
# print("Iteration:", i, "Current control cost:", opti.debug.value(self.problem['control_cost']))
# print("Iteration:", i, "Current time cost:", opti.debug.value(self.problem['time_cost']))
# print("Iteration:", i, "Current goal cost:", opti.debug.value(self.problem['goal_cost']))
# print("Iteration:", i, "Current solution:", opti.debug.value(X), opti.debug.value(U))
# X_debug = opti.debug.value(X)
# U_debug = opti.debug.value(U)
# plot the state and the control
# split a figure in half. The left side will show the positions, the right side will plot the controls
# X[i*3, :] is the ith robot's x position, X[i*3+1, :] is the y position, X[i*3+2, :] is the heading
# U[i*2, :] is the ith robot's linear velocity, U[i*2+1, :] is the ith robot's angular velocity
# import matplotlib.pyplot as plt
# fig, axs = plt.subplots(1, 2, figsize=(12, 6))
# for j in range(X_debug.shape[0]//3):
# axs[0].plot(X_debug[j*3, :], X_debug[j*3+1, :], label=f"Robot {j}")
# axs[0].scatter(X_debug[j*3, 0], X_debug[j*3+1, 0], color='green')
# axs[0].scatter(X_debug[j*3, -1], X_debug[j*3+1, -1], color='red')
# axs[0].set_title("Robot Positions")
# axs[0].set_xlabel("X")
# axs[0].set_ylabel("Y")
# axs[0].legend()
# axs[1].plot(U_debug[j*2, :], label=f"Robot {j} velocity")
# axs[1].plot(U_debug[j*2+1, :], label=f"Robot {j} omega")
# axs[1].set_title("Robot Controls")
# axs[1].set_xlabel("Time")
# axs[1].set_ylabel("Control")
# axs[1].legend()
# plt.show()
# opti.callback(print_intermediates_callback)
# sol = opti.solve()
# print("/solving optimization problem")
# import time
# start = time.time()
try:
sol = opti.solve() # actual solve
status = 'succeeded'
except:
sol = None
status = 'failed'
# end = time.time()
# print(f"Time taken to solve optimization problem = {end - start}")
results = {
'status' : status,
'solution' : sol,
}
# print(f"Final total = {sol.value(self.problem['cost'])}")
# print(f"robot costs = {sol.value(self.problem['robot_cost'])}")
# print(f"obstacle costs = {sol.value(self.problem['obs_cost'])}")
# print(f"control costs = {sol.value(self.problem['control_cost'])}")
# print(f"time costs = {sol.value(self.problem['time_cost'])}")
# print(f"goal costs = {sol.value(self.problem['goal_cost'])}")
if sol:
for var_name, var in self.problem.items():
if var_name != 'opti':
try:
results[var_name] = sol.value(var)
except:
results[var_name] = var
opti = self.problem['opti']
lam_g = sol.value(opti.lam_g)
results['lam_g'] = lam_g
return results