Skip to content
Snippets Groups Projects
subproblem_og.py 37.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    import numpy as np
    import random 
    
    class Subproblem:
        """
        Subproblem class responsible for finding and creating subproblems
        initialization inputs:
            - map: map of the environment (obstacle map)
            - conflict: the conflict the subproblem must cover
            - all_conflicts: All of the conflicts, so that we can maximize the number of conflicts resolved
            - robots: all of the robots
        """
        def __init__(self, map, conflict, robots, temp_starts, temp_goals,all_conflicts, type):
    
            self.map = map
            self.conflict = conflict
            self.conflicts = all_conflicts
            self.all_robots = robots
            self.type = type
            self.all_robots_involved_in_subproblem = []
    
            # The temporary starts/goals of the subpproblem. 
            # These are still in the original environment's coordinates
            self.temp_starts = temp_starts
            self.temp_goals = temp_goals
            print(f"temp starts = {self.temp_starts}")
            print(f"temp goals = {self.temp_goals}")
    
            # Location of the subproblem in the original environment's coordinates
            self.top_left = None
            self.bottom_right = None
    
            # get the indices of the robots that are actually in conflict
            self.robots_in_conflict = [r.label for r in conflict]
    
            # get the smallest/biggest x/y value of the robots in conflict
            # this gives us the area that our subproblem needs to cover
            self.row_range, self.col_range, self.leftmost_robot, self.rightmost_robot, self.topmost_robot, self.bottommost_robot = self.get_range_of_subproblem()
            
            self.subproblem_layout = None
            self.score = None
            self.waiting_score = None
            self.conflicts_covered = None
            
        def get_range_of_subproblem(self):
            """
            Find the smallest and largest x/y values. 
            This will tell us what range our subproblem needs to cover
            """
            smallest_row = None
            smallest_col = None
            largest_row = None
            largest_col = None
            leftmost_robot = None
            rightmost_robot = None
            topmost_robot = None
            bottommost_robot = None
            for robot_idx in self.robots_in_conflict:
                robot_position =  self.all_robots[robot_idx].current_position
                if smallest_row is None or smallest_col is None:
                    smallest_row = robot_position[0]
                    smallest_col = robot_position[1]
                    topmost_robot = robot_idx
                    leftmost_robot = robot_idx
    
                else:
                    if robot_position[0] < smallest_row:
                        smallest_row = robot_position[0]
                        topmost_robot = robot_idx
                    if robot_position[1] < smallest_col:
                        smallest_col = robot_position[1]
                        leftmost_robot = robot_idx
                
                if largest_row is None or largest_col is None:
                    largest_row = robot_position[0]
                    largest_col = robot_position[1]
                    rightmost_robot = robot_idx
                    bottommost_robot = robot_idx
    
                else:
                    if robot_position[0] > largest_row:
                        largest_row = robot_position[0]
                        bottommost_robot = robot_idx
                    if robot_position[1] > largest_col:
                        largest_col = robot_position[1]
                        rightmost_robot = robot_idx
            row_range = abs(largest_row - smallest_row)
            col_range = abs(largest_col - smallest_col)
    
            return row_range, col_range, leftmost_robot, rightmost_robot, topmost_robot, bottommost_robot
    
        def find_subproblem(self,S,find_best,prioritize_goal_assignment):
            """
            Find the subproblem that maximizes the number of robots covered and minimizes 
            the space occupied by the subproblem
    
            inputs:
                S - list of subproblems that have already been placed
    
            outputs:
                best_local - the best subproblem, relative to the matching 
                             template, not to the actual environment
            """
            # Find the best in the original environment
            best_global = self.find_global_subproblem(S,find_best)
    
            print(f"best global = {best_global}")
    
            if best_global is None: 
                return None
            self.score = best_global[1]
            self.conflicts_covered = best_global[2]
            self.waiting_score = best_global[3]
    
            # translate the found subproblem to the matching template
            best_local = self.match_template(best_global, prioritize_goal_assignment)
            self.subproblem_layout = best_local
    
            return best_local
    
        def get_robots_involved_in_subproblem(self, top_left, bottom_right):
            """
            Get all of the robots from all_robots that should be included in the subproblem
    
            inputs:
                top_left (node (r,c))- The top left node of the subproblem
                bottom_right (node (r,c))- The top left node of the subproblem
            outputs:
                all_robots (list of robots) - the robots involved in the subproblem
            """
            all_robots = []
            
            max_x = bottom_right[0]
            min_x = top_left[0]
            min_y = top_left[1]
            max_y = bottom_right[1]
            
            # any robot whose current and next node are in the subproblem are considered 
            # involved in the subproblem
            for r in self.all_robots:
                pos_curr = r.current_position 
                pos_next = r.goal
                x = pos_curr[0]
                y = pos_curr[1]
                x_next = pos_next[0]
                y_next = pos_next[1]
    
                if x <= max_x and x >= min_x and y <= max_y and y >= min_y and \
                    x_next <= max_x and x_next >= min_x and y_next <= max_y and y_next >= min_y:
                    all_robots.append(r)
    
            return all_robots
        
        def subproblem_contains_conflict(self, min_x, max_x, min_y, max_y, conflict):
            """
            Check if a given conflict is contained i n the subproblem with the input maxes and mins
            """
            robots_in_conflict = [r.label for r in conflict]
            for r in robots_in_conflict:
                pos = self.all_robots[r].current_position
                x = pos[0]
                y = pos[1]
    
                if x > max_x or x < min_x or y > max_y or y < min_y:
                    return False
                
            return True
    
        def score_subproblem(self, top_left, bottom_right):
            """
            Score a subproblem. It''s score is the number of conflicts that it covers
            """
            max_x = bottom_right[0]
            min_x = top_left[0]
            min_y = top_left[1]
            max_y = bottom_right[1]
    
            
            # part of the score will be the number of conflicts
            conflicts = []
            for c in self.conflicts:
                if self.subproblem_contains_conflict(min_x, max_x, min_y, max_y, c):
                    conflicts.append(c)
    
            num_conflicts = len(conflicts)
    
            # the other part of the score will be minimizing the number of waiting robots
            # get the number robots whose next desired cell is in this subproblem
            # num_waiting = 0
            # for r in self.all_robots:
            #     next = r.get_next_node()
            #     current = r.current_position
    
            #     if (next[0] <= max_x and next[0] >= min_x and next[1] <= max_y and next[1] >= min_y) \
            #         and not ( current[0] <= max_x and current[0] >= min_x and current[1] <= max_y and current[1] >= min_y):
    
            #         num_waiting += 1
    
    
    
    
            return conflicts, num_conflicts, 0
    
        def assign_temp_starts(self):
            temp_starts =[]
            for r in self.all_robots_involved_in_subproblem:
                x, y = r.current_position
                # cell_x = min(max(int((x - self.min_x) // self.cell_size), 0), self.grid_size - 1)
                # cell_y = min(max(int((y - self.min_y) // self.cell_size), 0), self.grid_size - 1)
                temp_starts.append([x, y])
    
            return temp_starts
    
        def assign_temp_goals(self, top_left, bottom_right):
            max_x = bottom_right[0]
            min_x = top_left[0]
            min_y = top_left[1]
            max_y = bottom_right[1]
            temp_goals = []
    
            # print(f"top left = {top_left}")
            # print(f"bottom right = {bottom_right}")
    
    
    
            # print(f"Assigning temp goals. Robots involved in subproblem = {self.robots_involved_in_subproblem}")
            for r in self.all_robots_involved_in_subproblem:
                # print(f"assigning temp goal for robot {r.get_label()}")
                # print(f"max x = {max_x}")
                # print(f"max y = {max_y}")
                # print(f"min x = {min_x}")
                # print(f"min y = {min_y}")
                assigned = False
                desired_goal = r.goal
                if (desired_goal[0], desired_goal[1]) not in temp_goals:
                    temp_goals.append((desired_goal[0], desired_goal[1]))
                    assigned = True
               
                else:
                    # print("cant assign desired goal")
                    x_rand = random.randint(min_x,max_x)
                    y_rand = random.randint(min_y,max_y)
                    # print(f"x rand = {x_rand}")
                    # print(f"y rand = {y_rand}")
                    # print(f"obs map = {self.map[x_rand][y_rand]}")
                    while(((x_rand, y_rand) in temp_goals) or (self.map[x_rand][y_rand])):
                        x_rand = random.randint(min_x,max_x)
                        y_rand = random.randint(min_y,max_y)
                    #     print(f"x rand = {x_rand}")
                    #     print(f"y rand = {y_rand}")
                    #     print(f"obs map = {self.map[x_rand][y_rand]}")
                    # print(f"assigning {(x_rand, y_rand)}")
                    
                    temp_goals.append((x_rand, y_rand))
                    # print(f"temp goals = {temp_goals}")
                    assigned = True
                    # temp_goals.append(path[0])
                    
                if not assigned:       
                    # assign a random unassigned node
                    x_rand = random.randint(min_x,max_x)
                    y_rand = random.randint(min_y,max_y)
                    while((x_rand, y_rand) in temp_goals or (self.map[x_rand][y_rand])):
                        x_rand = random.randint(min_x,max_x)
                        y_rand = random.randint(min_y,max_y)
                    temp_goals.append((x_rand, y_rand))
                    assigned = True
                    # temp_goals.append(path[0])
                    
    
            # print(f"temp goals assigned = {temp_goals}")
            return temp_goals
    
        def assign_temp_goals_prioritized(self, top_left, bottom_right):
            max_x = bottom_right[0]
            min_x = top_left[0]
            min_y = top_left[1]
            max_y = bottom_right[1]
            temp_goals = [None]*len(self.all_robots_involved_in_subproblem)
    
            # print(f"top left = {top_left}")
            # print(f"bottom right = {bottom_right}")
    
            cost_to_go = []
            for r in self.all_robots_involved_in_subproblem:
                path = r.plan_astar(self.map)
                cost_to_go.append(len(path))
    
            
    
            # robots_and_costtogo.sort(key=lambda x: x[1])
            # robots_and_costtogo.reverse()
            
            cost_to_go = np.asarray(cost_to_go)
            cost_to_go_sorted = np.sort(cost_to_go)
            cost_to_go_sorted = np.flip(cost_to_go_sorted)
            # for r in self.all_robots_involved_in_subproblem: print(r.get_label())
            # print(f"CTG = {cost_to_go_sorted}")
            if abs(cost_to_go_sorted[0] - cost_to_go_sorted[1]) <= 1 and self.type ==52:
                # print("using non prioritised goal assignments")
                return self.assign_temp_goals(top_left, bottom_right)
            
            cost_to_go_sorted_idxs = np.argsort(cost_to_go)
            cost_to_go_sorted_idxs = np.flip(cost_to_go_sorted_idxs)
    
        
    
    
            # print(f"robots involved {[r.get_label() for r in self.all_robots_involved_in_subproblem]}")
            # print(cost_to_go_sorted_idxs)
    
            # print(f"Assigning temp goals. Robots involved in subproblem = {self.robots_involved_in_subproblem}")
            for i in cost_to_go_sorted_idxs:
                r = self.all_robots_involved_in_subproblem[i]
                # print(f"assigning temp goal for robot {r.get_label()}")
                # print(f"max x = {max_x}")
                # print(f"max y = {max_y}")
                # print(f"min x = {min_x}")
                # print(f"min y = {min_y}")
                assigned = False
                path = r.plan_astar(self.map)
                # print(f"path = {path}")
                for j in range(len(path)):
                    node = path[j]
                    x = node[0]
                    y = node[1]
                    # when we encounter the first node outside of our subproblem,
                    # we want the node that comes directly before this
                    if x > max_x or x < min_x or y > max_y or y < min_y:
                        # print(f"triggered node = {node}")
                        # print(f"want to assign node {path[j-1]}")
                        # print(f"temp goals = {temp_goals}")
                        if [path[j-1][0], path[j-1][1]] not in temp_goals:
                            # print(f"Assigned it")
                            temp_goals[i] = [path[j-1][0], path[j-1][1]]
                            assigned = True
                            break
                        else:
                            # print("cant assign desired goal")
                            x_rand = random.randint(min_x,max_x)
                            y_rand = random.randint(min_y,max_y)
                            # print(f"x rand = {x_rand}")
                            # print(f"y rand = {y_rand}")
                            # print(f"obs map = {self.map[x_rand][y_rand]}")
                            while(([x_rand, y_rand] in temp_goals) or (self.map[x_rand][y_rand])):
                                x_rand = random.randint(min_x,max_x)
                                y_rand = random.randint(min_y,max_y)
                            #     print(f"x rand = {x_rand}")
                            #     print(f"y rand = {y_rand}")
                            #     print(f"obs map = {self.map[x_rand][y_rand]}")
                            # print(f"assigning {(x_rand, y_rand)}")
                            
                            temp_goals[i] = [x_rand, y_rand]
                            # print(f"temp goals = {temp_goals}")
                            assigned = True
                            # temp_goals.append(path[0])
                            
                            
                            break
                if not assigned:       
                    # assign a random unassigned node
                    x_rand = random.randint(min_x,max_x)
                    y_rand = random.randint(min_y,max_y)
                    while([x_rand, y_rand] in temp_goals or (self.map[x_rand][y_rand])):
                        x_rand = random.randint(min_x,max_x)
                        y_rand = random.randint(min_y,max_y)
                    temp_goals[i] = [x_rand, y_rand]
                    assigned = True
                    # temp_goals.append(path[0])
                    
    
            # print(f"temp goals assigned = {temp_goals}")
            return temp_goals
    
        def get_starts(self):
            return self.transformed_starts
        
        def get_goals(self):
            return self.transformed_goals
    
        def get_world_coordinates(self,r,c):
            """
            Given the local coordinates of a subproblem template, 
            return the world coordinates
            """
            subproblem = self.subproblem_layout
            # print(f"subproblem = {subproblem}\n {subproblem.shape}")
            lst = subproblem[r,c]
            return lst[0]
    
        def update_local_starts_and_goals(self):
            """
            get the starts/goals in terms of the subproblem matched to the template
            """
            self.transformed_starts = []
            self.transformed_goals = []
            for i in range(len(self.temp_starts)):
                for r in range(len(self.subproblem_layout)):
                    for c in range(len(self.subproblem_layout[r])):
                        # find robot i
                        these_starts = self.subproblem_layout[r][c][1]
                        these_goals = self.subproblem_layout[r][c][2]
    
                        if i in these_starts:
                            self.transformed_starts.append([r,c])
                        if i in these_goals:
                            self.transformed_goals.append([r,c])
    
        def rotate(self):
            """
            Rotate the subproblem 180 degrees and then update starts and goals
            """
            subproblem = self.subproblem_layout
            subproblem = np.rot90(subproblem)
            # subproblem = np.rot90(subproblem)
            self.subproblem_layout = subproblem
    
            self.update_local_starts_and_goals()
    
        def flip(self):
            """
            Flip the subproblem over the horizontal axis and then update starts and goals
            """
            subproblem = self.subproblem_layout
            subproblem = np.flip(subproblem,1)
            self.subproblem_layout = subproblem
            self.update_local_starts_and_goals()
            
        def find_global_subproblem(self, S, find_best):
            """
            Find the best subproblem that contains the conflict completely. 
            "best" in this case means covering the most conflicts
            inputs: 
                S- list of subproblems that cannot be overlapped with
            outputs: 
                (top_left,bottom_right) - location of best subproblem of this type
            """
                    
            # We start by finding all possible valid subproblems (of this type) 
            # and then choosing the best one at the end
            # initialize the list of all found subproblems to be empty.
            possible_subproblems = []
    
            if self.type == 23: 
                row_val = 2
                col_val = 3
            elif self.type == 33: 
                row_val = 3
                col_val = 3
            else:
                row_val = 2
                col_val = 5 
            
            if self.row_range <= row_val and self.col_range <= col_val:
                # look for a nxm
                row_shift = row_val-1
                col_shift = col_val-1
                left_robot = self.all_robots[self.leftmost_robot].current_position
                top_robot = self.all_robots[self.topmost_robot].current_position
    
                for r in range(row_shift+1):
                    for c in range(col_shift+1):
    
                        top_left = (top_robot[0]-r, left_robot[1]-c)
                        bottom_right = (top_left[0]+row_shift, top_left[1]+col_shift)
    
                        if self.is_valid(top_left, bottom_right,S):
                            
                            conflicts, score, num_waiting = self.score_subproblem(top_left, bottom_right)
                            if not find_best: 
                                return ((top_left, bottom_right), score, conflicts,num_waiting)
                            possible_subproblems.append(((top_left, bottom_right), score, conflicts, num_waiting))
    
                        right_robot = self.all_robots[self.rightmost_robot].current_position
                        bottom_robot = self.all_robots[self.bottommost_robot].current_position
                        bottom_right = (bottom_robot[0]+r, right_robot[1]+c)
                        top_left = (bottom_right[0]-row_shift, bottom_right[1]-col_shift)
    
                        if self.is_valid(top_left, bottom_right,S):
                            
                            conflicts, score, num_waiting = self.score_subproblem(top_left, bottom_right)
                            if not find_best: 
                                return ((top_left, bottom_right), score, conflicts,num_waiting)
                            possible_subproblems.append(((top_left, bottom_right), score, conflicts, num_waiting))
    
            if row_val != col_val:
                if self.row_range <= col_val and self.col_range <= row_val:
                    # look for a mxn
                    row_shift = col_val-1
                    col_shift = row_val-1
                    left_robot = self.all_robots[self.leftmost_robot].current_position
                    top_robot = self.all_robots[self.topmost_robot].current_position
                    for r in range(row_shift+1):
                        for c in range(col_shift+1):
                            top_left = (left_robot[0]-r, top_robot[1]-c)
                            bottom_right = (top_left[0]+row_shift, top_left[1]+col_shift)
    
                            if self.is_valid(top_left, bottom_right,S):
                                
                                conflicts, score, num_waiting = self.score_subproblem(top_left, bottom_right)
                                if not find_best: 
                                    return ((top_left, bottom_right), score, conflicts, num_waiting)
                                possible_subproblems.append(((top_left, bottom_right), score, conflicts, num_waiting))
    
                            right_robot = self.all_robots[self.rightmost_robot].current_position
                            bottom_robot = self.all_robots[self.bottommost_robot].current_position
                            bottom_right = (right_robot[0]+r, bottom_robot[1]+c)
                            top_left = (bottom_right[0]-row_shift, bottom_right[1]-col_shift)
    
                            if self.is_valid(top_left, bottom_right,S):
                                
                                conflicts, score, num_waiting = self.score_subproblem(top_left, bottom_right)
                                if not find_best: 
                                    return ((top_left, bottom_right), score, conflicts, num_waiting)
                                possible_subproblems.append(((top_left, bottom_right), score, conflicts, num_waiting))
    
            # if there are no valid subproblems, return None. 
            # This conflict will be handled by waiting instead of a subproblem
            if possible_subproblems == []: 
                return None 
            
            # otherwise, return the best of what we have    
            best = max(possible_subproblems, key=lambda x:x[1])
            # print(f"best subproblem = {best[0]}")
            # best_subproblem = best[0]
    
            most_conflicts_covered = best[1]
            # print(f"best score = {best_score}")
            cands_with_best_score = []
            for cand in possible_subproblems:
                if cand[1] == most_conflicts_covered:
                    cands_with_best_score.append(cand)
    
            best = min(cands_with_best_score, key=lambda x:x[3])
            return best
    
        def match_template(self, s_loc_global, prioritize_goal_assignment):
            """
            Match a subproblem, s, from the original environment, to its
            corresponding template
    
            inputs: 
                s_loc_global (location, score, conflicts_covered)- the location of global subproblem 
            outputs: 
                a templated subproblem
            """
    
            # 
            self.top_left = s_loc_global[0][0]
            self.bottom_right = s_loc_global[0][1]
            top_left = self.top_left
            bottom_right = self.bottom_right
    
            self.all_robots_involved_in_subproblem = self.get_robots_involved_in_subproblem(top_left, bottom_right)
    
            self.temp_starts = self.assign_temp_starts()
            if prioritize_goal_assignment: self.temp_goals = self.assign_temp_goals(top_left, bottom_right)
            else: self.temp_goals = self.assign_temp_goals(top_left, bottom_right)
    
            print(f"temp starts afer reassignment= {self.temp_starts}")
            print(f"temp goals after reassignment= {self.temp_goals}")
            
            row_range = abs(bottom_right[0] - top_left[0])
            col_range = abs(top_left[1] - bottom_right[1])
    
            subproblem = np.zeros((col_range+1,row_range+1),dtype=object)
    
            start_idxs = []
            goal_idxs = []
            
            y_count = 0
            for i in range(len(subproblem)):
                x_count = 0
                for j in range(len(subproblem[0])):
                    
                    x = bottom_right[0]-x_count
                    y = bottom_right[1]-y_count
    
                    starts = []
                    goals = []
    
                    for k in range(len(self.temp_starts)):
                        start = self.temp_starts[k]
                        goal = self.temp_goals[k]
    
                        start_x = start[0] 
                        start_y = start[1] 
                        goal_x = goal[0] 
                        goal_y = goal[1] 
                        if start_x == x and start_y == y: 
                            starts.append(k)
                            start_idxs.append([i,j])
                        if goal_x == x and goal_y == y: 
                            goals.append(k)
                            goal_idxs.append([i,j])
                
                    subproblem[i][j] = [[x, y], starts, goals]
                    x_count +=1
                y_count +=1
    
    
            if self.type == 23 and row_range == 1: 
                # we need to rotate (transpose + flip)
                subproblem = np.transpose(subproblem)
                subproblem = np.flip(subproblem,1)
            if self.type == 25 and row_range != 1:
                # we need to rotate (transpose + flip)
                subproblem = np.transpose(subproblem)
                subproblem = np.flip(subproblem,1)
    
            # get the starts/goals in terms of the subproblem matched to the template
            self.transformed_starts = []
            self.transformed_goals = []
            for i in range(len(self.temp_starts)):
                for r in range(len(subproblem)):
                    for c in range(len(subproblem[r])):
                        # find robot i
                        these_starts = subproblem[r][c][1]
                        these_goals = subproblem[r][c][2]
    
                        if i in these_starts:
                            self.transformed_starts.append([r,c])
                        if i in these_goals:
                            self.transformed_goals.append([r,c])
            return subproblem
    
        def is_valid(self, top_left, bottom_right, S):
            """
            Determine if a given subproblem is valid. A subproblem is valid if:
            1. It covers at least the conflict in question
            2. It matches its template's obstacle layout
            3. It does not overlap with any subproblem in S
            """
            max_x = bottom_right[0]
            min_x = top_left[0]
            min_y = top_left[1]
            max_y = bottom_right[1]
    
            # check that we are in bounds of our environment
            if min_x < 0 or min_y < 0 or max_x > len(self.map)-1 or max_y > len(self.map[0])-1: 
                # print("out of bounds")
                return False
    
    
            # if (max_x - min_x > 5 and max_y - min_y > 2) or (max_x - min_x > 2 and max_y - min_y > 5):
            #     return False
            
    
            count = 0
            for x in range(min_x, max_x+1):
                for y in range(min_y, max_y+1):
                    if self.map[x][y]: 
                        count += 1
                        if self.type != 25: return False
                    if self.type == 25 and count > 1: 
                        # print("More than one obstacle detected")
                        return False
    
            if self.type == 25:
                # Check that the obstacle is in the correct place using exclusive or
                if max_x - min_x == 1:
                    if (self.map[top_left[0]][bottom_right[1]-2]) == (self.map[top_left[0]+1][bottom_right[1]-2]):
                        # invalid
                        # print("obstacle in the wrong place")
                        return False
                else:
                    if (self.map[top_left[0]+2][bottom_right[1]]) == (self.map[top_left[0]+2][bottom_right[1]-1]):
                        # invalid
                        # print("obstacle in the wrong place")
                        return False
    
            # check that all robots in conflict are in the subproblem
            for robot_idx in self.robots_in_conflict:
                pos = self.all_robots[robot_idx].current_position
                x = pos[0]
                y = pos[1]
    
                if x > max_x or x < min_x or y > max_y or y < min_y:
                    # print(f"robot {robot_idx} is left out at position {pos}")
                    return False
                
            # check that there is no overlap with any other subproblem in S
            x = set(range(min_x,max_x+1))
            y = set(range(min_y,max_y+1))
            for s in S:
                s_top_left = s.top_left
                s_bottom_right = s.bottom_right
                s_max_x = s_bottom_right[0]
                s_min_x = s_top_left[0]
                s_min_y = s_top_left[1]
                s_max_y = s_bottom_right[1]
    
                s_x = set(range(s_min_x,s_max_x+1))
                s_y = set(range(s_min_y,s_max_y+1))
    
    
                x_overlap = s_x.intersection(x)  
                y_overlap = s_y.intersection(y)  
                if len(x_overlap) > 0 and len(y_overlap) > 0:
                    return False
                
            return True
    
    def find_subproblem(c, conflicts, S, robots, starts, goals, obstacle_map, find_best, prioritised):
        print(f"finding best subproblem")
        two_by_three = Subproblem(obstacle_map, c, robots, starts, goals, conflicts,23)
        three_by_three = Subproblem(obstacle_map, c, robots, starts, goals, conflicts,33)
        two_by_five = Subproblem(obstacle_map, c, robots, starts, goals, conflicts,25)
    
        best_2x3 = two_by_three.find_subproblem(S,find_best, prioritised)
        # best_2x3 = two_by_three.subproblem
        best_3x3 = three_by_three.find_subproblem(S,find_best, prioritised)
        # best_3x3 = three_by_three.subproblem
        best_2x5 = two_by_five.find_subproblem(S,find_best, prioritised)
        # best_2x5 = two_by_five.subproblem
    
    
        candidates = []
        if best_2x3 is not None:
            candidates.append([two_by_three, two_by_three.score, two_by_three.waiting_score, 2])
        if best_3x3 is not None:
            candidates.append([three_by_three, three_by_three.score, three_by_three.waiting_score, 3])
        if best_2x5 is not None:
            candidates.append([two_by_five, two_by_five.score, two_by_five.waiting_score, 5])
    
        if len(candidates) == 0: return [],None 
    
        if not find_best:
            # print(f"best = {best}")
            best = candidates[0]
            best_subproblem = best[0]
            
            conflicts = best[0].conflicts_covered
    
            return conflicts, best_subproblem
    
        best = max(candidates, key=lambda x:x[1])
        # print(f"best subproblem = {best[0]}")
        # best_subproblem = best[0]
    
        best_score = best[1]
        # print(f"best score = {best_score}")
        cands_with_best_score = []
        for cand in candidates:
            if cand[1] == best_score:
                cands_with_best_score.append(cand)
    
        best_waiting = min(cands_with_best_score, key=lambda x:x[2])
        best_waiting_score = best_waiting[2]
        # print(f"best score = {best_score}")
        cands_with_best_score_and_best_waiting = []
        for cand in candidates:
            if cand[1] == best_score and cand[2] == best_waiting:
                cands_with_best_score_and_best_waiting.append(cand)
    
        if cands_with_best_score_and_best_waiting == []:
            final_candidates = cands_with_best_score
        else: final_candidates = cands_with_best_score_and_best_waiting 
    
        best = min(final_candidates, key=lambda x:x[3])
        
    
        # print(f"best = {best}")
        best_subproblem = best[0]
        
        conflicts = best[0].conflicts_covered
        # print(f"conflicts = {conflicts}")
        # type = best[3]  
    
        return conflicts, best_subproblem
    
    
    def order_query(starts, goals):
        """
        Order the starts and goals in the way that the library expects to see them
        Ordering is determined the start node.
        We use row major ordering:
            ___ ___ ___
        |_6_|_7_|_7_|
        |_3_|_4_|_5_|
        |_0_|_1_|_2_|
    
        Inputs:
            starts - the starts of each robot to be reordered
            goals - the goals of each robot to be reordered
        Outputs - 
            ordered_starts - The starts in the correct order
            ordered_goals - The goals in the correct order
            new_to_old - The mapping of indices, so that we can recover the original order.
        """
        fake_starts = []
        for start in starts:
            fake_starts.append([3*(start[0]), start[1]])
            
        # get the sums of the starts
        sum_starts = []
        for start in fake_starts:
            sum_starts.append(sum(start))
    
        # use argsort to sort them
        sum_starts = np.asarray(sum_starts)
    
        sum_starts_sorted_idxs = np.argsort(sum_starts)
        # sum_starts_sorted_idxs = np.flip(sum_starts_sorted_idxs)
    
        ordered_starts = [starts[i] for i in sum_starts_sorted_idxs]
        ordered_goals = [goals[i] for i in sum_starts_sorted_idxs]
    
        new_to_old= [0]*len(sum_starts_sorted_idxs)
        for i in range(len(sum_starts_sorted_idxs)):
            new_to_old[sum_starts_sorted_idxs[i]] = i
    
        return ordered_starts, ordered_goals, new_to_old
        
    def restore_original_order(ordered, new_to_old_idx):
        """
        Order a solution according to its original start and goal ordering. 
        Inputs:
            ordered - list of paths, given in order from the database
            new_to_old_idx - a mapping from the ordered index to the old order index.
        Outputs:
            og_order - the same solution, but in the order of the orignal order given by new_to_old_idx
        """
        og_order = [ordered[new_to_old_idx[i]] for i in range(len(ordered))]
        return og_order
    
    def query_library(obstacle_map, s, lib_2x3, lib_3x3, lib_2x5):
        """
        Query the library to get a solution for the subproblem s
    
        inputs:
            s - (instance of subproblem class) The subproblem the we need a solution for
        outputs:
            sol - (list of paths) A valid solution for s. This is a list of paths 
        """
    
        start_nodes = s.get_starts()
        goal_nodes = s.get_goals()
        if start_nodes == goal_nodes:
            # print(f"start and goal are equal")
            sol = []
            for goal in goal_nodes: sol.append([goal])
            return sol
            
        
        sol = None
        count = 0
        while sol is None:
            for i in range(8):
                if s.type == 23:
                    start_nodes = s.get_starts()
                    goal_nodes = s.get_goals()
    
    
                    # print(f"type = {s.type}")
                    # print(f"tl = {s.top_left}")
                    # print(f"br = {s.bottom_right}")
                    # for r in s.all_robots_involved_in_subproblem: print(r.get_label())
                    # print(f"temp starts = {s.temp_starts}")
                    # print(f"temp goals = {s.temp_goals}")
                    # print(f"goal nodes before = {goal_nodes}")
                    # print(f"start nodes before = {start_nodes}")
                    # print(f"goal nodes before = {goal_nodes}")
    
                    # reorder the starts and goals for the query
                    start_nodes, goal_nodes, mapping_idxs = order_query(start_nodes, goal_nodes)
                    sol = lib_2x3.get_matching_solution(start_nodes, goal_nodes)
    
                    # reorder the solution to match the robots in our og order
                    if sol is not None: sol = restore_original_order(sol, mapping_idxs)
    
                    # print(f"subproblem = {s.subproblem_layout}")
                    # print(f"start nodes after= {start_nodes}")
                    # print(f"goal nodes after = {goal_nodes}\n\n\n")
    
                    
                    if sol is not None: break
    
                elif s.type == 33:
                    start_nodes = s.get_starts()
                    goal_nodes = s.get_goals()
    
                    # print(f"type = {s.type}")
                    # print(f"tl = {s.top_left}")
                    # print(f"br = {s.bottom_right}")
                    # print(f"temp starts = {s.temp_starts}")
                    # print(f"temp goals = {s.temp_goals}")
                    # print(f"goal nodes before = {goal_nodes}")
                    # print(f"start nodes before = {start_nodes}")
                    # print(f"goal nodes before = {goal_nodes}")
    
                    # reorder the starts and goals for the query
                    start_nodes, goal_nodes, mapping_idxs = order_query(start_nodes, goal_nodes)
                    sol = lib_3x3.get_matching_solution(start_nodes, goal_nodes)
    
                    # reorder the solution to match the robots in our og order
                    if sol is not None: sol = restore_original_order(sol, mapping_idxs)
    
                    # print(f"subproblem = {s.subproblem_layout}")
                    # print(f"start nodes after= {start_nodes}")
                    # print(f"goal nodes after = {goal_nodes}")
    
                    if sol is not None: break
    
                elif s.type == 25:
                    start_nodes = s.get_starts()
                    goal_nodes = s.get_goals()
    
    
                    # print(f"subproblem = {len(s.subproblem_layout)}")
    
                    
    
                    if len(s.subproblem_layout) == 5:
                        obs_locat = s.subproblem_layout[2][1][0]
    
                        if obstacle_map[obs_locat[0]][obs_locat[1]]:
    
                            # print(f"type = {s.type}")
                            # print(f"tl = {s.top_left}")
                            # print(f"br = {s.bottom_right}")
                            # print(f"temp starts = {s.temp_starts}")
                            # print(f"temp goals = {s.temp_goals}")
                            # print(f"start nodes before = {start_nodes}")
                            # print(f"goal nodes before = {goal_nodes}")
    
    
                            # reorder the starts and goals for the query
                            start_nodes, goal_nodes, mapping_idxs = order_query(start_nodes, goal_nodes)
                            sol = lib_2x5.get_matching_solution(start_nodes, goal_nodes)
    
                            # reorder the solution to match the robots in our og order
                            if sol is not None: 
                                sol = restore_original_order(sol, mapping_idxs)
    
                            # print(f"subproblem = {s.subproblem_layout}")
                            # print(f"start nodes after= {start_nodes}")
                            # print(f"goal nodes after = {goal_nodes}\n\n\n")
                            if sol is not None: 
                                break
                    #     else:
                    #         print("obs in wrong spot")
                    # else:
                    #     print("subproblem wrong shape")
                    
                s.rotate()
                count += 1
            if sol is None: 
                s.flip()
            if count >= 10: break
    
        if sol == None: print("returning None")
        return sol