Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
predtuner
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
predtuner
Commits
69cef13c
Commit
69cef13c
authored
4 years ago
by
Yifan Zhao
Browse files
Options
Downloads
Patches
Plain Diff
Improved plotting of configurations
parent
598ffbf4
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
predtuner/approxapp.py
+11
-5
11 additions, 5 deletions
predtuner/approxapp.py
predtuner/modeledapp.py
+35
-1
35 additions, 1 deletion
predtuner/modeledapp.py
with
46 additions
and
6 deletions
predtuner/approxapp.py
+
11
−
5
View file @
69cef13c
...
...
@@ -114,8 +114,8 @@ class Config:
self
.
test_qos
:
Optional
[
float
]
=
test_qos
@property
def
qos_
speedup
(
self
):
return
self
.
qos
,
1
/
self
.
cost
def
speedup
(
self
):
return
1
/
self
.
cost
T
=
TypeVar
(
"
T
"
,
bound
=
Config
)
...
...
@@ -232,7 +232,7 @@ class ApproxTuner(Generic[T]):
@staticmethod
def
take_best_configs
(
configs
:
List
[
T
],
n
:
Optional
[
int
]
=
None
)
->
List
[
T
]:
points
=
np
.
array
([
c
.
qos
_
speedup
for
c
in
configs
])
points
=
np
.
array
([
(
c
.
qos
,
c
.
speedup
)
for
c
in
configs
])
taken_idx
=
is_pareto_efficient
(
points
,
take_n
=
n
)
return
[
configs
[
i
]
for
i
in
taken_idx
]
...
...
@@ -252,16 +252,22 @@ class ApproxTuner(Generic[T]):
f
.
write
(
encode
(
confs
,
indent
=
2
))
def
plot_configs
(
self
,
show_qos_loss
:
bool
=
False
,
connect_best_points
:
bool
=
False
self
,
show_qos_loss
:
bool
=
False
,
connect_best_points
:
bool
=
False
,
use_test_qos
:
bool
=
False
,
)
->
plt
.
Figure
:
if
not
self
.
tuned
:
raise
RuntimeError
(
f
"
No tuning session has been run; call self.tune() first.
"
)
def
qos_speedup
(
conf
):
return
conf
.
test_qos
if
use_test_qos
else
conf
.
qos
,
conf
.
speedup
def
get_points
(
confs
):
sorted_points
=
np
.
array
(
sorted
([
c
.
qos_speedup
for
c
in
confs
],
key
=
lambda
p
:
p
[
0
])
sorted
([
qos_speedup
(
c
)
for
c
in
confs
],
key
=
lambda
p
:
p
[
0
])
).
T
if
show_qos_loss
:
sorted_points
[
0
]
=
self
.
baseline_qos
-
sorted_points
[
0
]
...
...
This diff is collapsed.
Click to expand it.
predtuner/modeledapp.py
+
35
−
1
View file @
69cef13c
...
...
@@ -5,6 +5,7 @@ import pickle
from
pathlib
import
Path
from
typing
import
Callable
,
Dict
,
Iterator
,
List
,
Optional
,
Tuple
,
Type
,
Union
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
pandas
as
pd
import
torch
...
...
@@ -390,7 +391,7 @@ class ApproxModeledTuner(ApproxTuner):
is_threshold_relative
=
is_threshold_relative
,
take_best_n
=
take_best_n
,
test_configs
=
False
,
# Test configs below by ourselves
app_kwargs
=
{
"
cost_model
"
:
cost_model
,
"
qos_model
"
:
qos_model
}
app_kwargs
=
{
"
cost_model
"
:
cost_model
,
"
qos_model
"
:
qos_model
}
,
)
if
validate_configs
is
None
and
qos_model
!=
"
none
"
:
msg_logger
.
info
(
...
...
@@ -440,6 +441,39 @@ class ApproxModeledTuner(ApproxTuner):
msg_logger
.
info
(
"
%d of %d configs remain
"
,
len
(
ret_configs
),
len
(
configs
))
return
ret_configs
def
plot_configs
(
self
,
show_qos_loss
:
bool
=
False
,
connect_best_points
:
bool
=
False
)
->
plt
.
Figure
:
if
not
self
.
tuned
:
raise
RuntimeError
(
f
"
No tuning session has been run; call self.tune() first.
"
)
def
get_points
(
confs
,
validated
):
def
qos_speedup
(
conf
):
return
conf
.
validated_qos
if
validated
else
conf
.
qos
,
conf
.
speedup
sorted_points
=
np
.
array
(
sorted
([
qos_speedup
(
c
)
for
c
in
confs
],
key
=
lambda
p
:
p
[
0
])
).
T
if
show_qos_loss
:
sorted_points
[
0
]
=
self
.
baseline_qos
-
sorted_points
[
0
]
return
sorted_points
fig
,
ax
=
plt
.
subplots
()
kept_confs
=
get_points
(
self
.
kept_configs
,
False
)
best_confs
=
get_points
(
self
.
best_configs
,
False
)
best_confs_val
=
get_points
(
self
.
best_configs
,
True
)
ax
.
plot
(
kept_confs
[
0
],
kept_confs
[
1
],
"
o
"
,
label
=
"
valid
"
)
mode
=
"
-o
"
if
connect_best_points
else
"
o
"
ax
.
plot
(
best_confs
[
0
],
best_confs
[
1
],
mode
,
label
=
"
best
"
)
mode
=
"
-o
"
if
connect_best_points
else
"
o
"
ax
.
plot
(
best_confs_val
[
0
],
best_confs_val
[
1
],
mode
,
label
=
"
best_validated
"
)
ax
.
set_xlabel
(
"
QoS Loss
"
if
show_qos_loss
else
"
QoS
"
)
ax
.
set_ylabel
(
"
Speedup (x)
"
)
ax
.
legend
()
return
fig
@classmethod
def
_get_config_class
(
cls
)
->
Type
[
Config
]:
return
ValConfig
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment