-
Yifan Zhao authoredYifan Zhao authored
test_torchapp.py 1.85 KiB
import unittest
import torch
from model_zoo import CIFAR, VGG16Cifar10
from predtuner import TorchApp, accuracy, config_pylogger, get_knobs_from_file
from torch.nn import Conv2d, Linear
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Subset
msg_logger = config_pylogger(output_dir="/tmp", verbose=True)
class TestTorchApp(unittest.TestCase):
def setUp(self):
dataset = CIFAR.from_file(
"model_data/cifar10/input.bin", "model_data/cifar10/labels.bin"
)
self.dataset = Subset(dataset, range(100))
self.module = VGG16Cifar10()
self.module.load_state_dict(torch.load("model_data/vgg16_cifar10.pth.tar"))
def get_app(self):
return TorchApp(
"TestTorchApp",
self.module,
DataLoader(self.dataset, batch_size=500),
DataLoader(self.dataset, batch_size=500),
get_knobs_from_file(),
accuracy,
)
def test_init(self):
app = self.get_app()
n_knobs = {op: len(ks) for op, ks in app.op_knobs.items()}
self.assertEqual(len(n_knobs), 34)
for op_name, op in app.midx.name_to_module.items():
if isinstance(op, Conv2d):
nknob = 56
elif isinstance(op, Linear):
nknob = 2
else:
nknob = 1
self.assertEqual(n_knobs[op_name], nknob)
def test_baseline_qos(self):
app = self.get_app()
qos, _ = app.measure_qos_perf({}, False)
self.assertAlmostEqual(qos, 88.0)
def test_tuning(self):
app = self.get_app()
baseline, _ = app.measure_qos_perf({}, False)
tuner = app.get_tuner()
tuner.tune(100, baseline - 3.0)
configs = tuner.kept_configs
for conf in configs:
self.assertTrue(conf.qos > baseline - 3.0)