Newer
Older
import torch
from model_zoo import CIFAR, VGG16Cifar10
from predtuner import TorchApp, accuracy, config_pylogger, get_knobs_from_file
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Subset
msg_logger = config_pylogger(output_dir="/tmp", verbose=True)
class TorchAppSetUp(unittest.TestCase):
@classmethod
def setUpClass(cls):
dataset = CIFAR.from_file(
"model_data/cifar10/input.bin", "model_data/cifar10/labels.bin"
)
cls.dataset = Subset(dataset, range(100))
cls.module = VGG16Cifar10()
cls.module.load_state_dict(torch.load("model_data/vgg16_cifar10.pth.tar"))
cls.app = TorchApp(
cls.module,
DataLoader(cls.dataset, batch_size=500),
DataLoader(cls.dataset, batch_size=500),
get_knobs_from_file(),
accuracy,
)
def test_knobs(self):
n_knobs = {op: len(ks) for op, ks in self.app.op_knobs.items()}
for op_name, op in self.app.midx.name_to_module.items():
else:
nknob = 1
self.assertEqual(n_knobs[op_name], nknob)
def test_tuning_relative_thres(self):
baseline, _ = self.app.measure_qos_perf({}, False)
tuner = self.app.get_tuner()
tuner.tune(100, 3.0, 3.0, True, 10)
for conf in tuner.kept_configs:
self.assertTrue(conf.qos > baseline - 3.0)
if len(tuner.kept_configs) >= 10:
self.assertEqual(len(tuner.best_configs), 10)
def test_enum_models(self):
self.assertSetEqual(
set(model.name for model in self.app.get_models()),
{"perf_linear", "qos_p1", "qos_p2"},
)
class TestTorchAppTunerResult(TorchAppSetUp):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.baseline, _ = cls.app.measure_qos_perf({}, False)
cls.tuner = cls.app.get_tuner()
cls.tuner.tune(100, cls.baseline - 3.0)
self.assertTrue(conf.qos > self.baseline - 3.0)
def test_pareto(self):
for c1 in configs:
self.assertFalse(
any(c2.qos > c1.qos and c2.perf > c1.perf for c2 in configs)
)
def test_dummy_calib(self):
configs = self.tuner.best_configs
for c in configs:
self.assertAlmostEqual(c.calib_qos, c.qos)
class TestModeledTuning(TorchAppSetUp):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.baseline, _ = cls.app.measure_qos_perf({}, False)
def test_qos_p1(self):
tuner = self.app.get_tuner()
tuner.tune(
100,
3.0,
is_threshold_relative=True,
perf_model="perf_linear",
qos_model="qos_p1",
)
def test_qos_p2(self):
tuner = self.app.get_tuner()
tuner.tune(
100,
3.0,
is_threshold_relative=True,
perf_model="perf_linear",
qos_model="qos_p2",
)