Keras Frontend
Installing Dependencies
Updating pip
The pip version required in this subproject must be >= 19.3
.
To upgrade pip:
pip install --upgrade pip
To check installed pip version:
pip -V
Importing Conda Environment:
conda env create -f keras_environment.yml --name ${KERAS_ENV_NAME}
Note: pip version MUST be > 19.3
Activating Conda Environment:
conda activate ${KERAS_ENV_NAME}
Building and Installing Frontend:
python setup.py build
python setup.py install
Running Benchmaks
Benchmarks under ./src/
List of benchmarks and the expected accuracies:
Benchmark | Accuracy |
---|---|
AlexNet-CIFAR10 | 79.16 |
AlexNet2-CIFAR10 | 85.10 |
AlexNet-ImageNet | 56.30 |
LeNet-MNIST | 99.11 |
MobileNet-CIFAR10 | 82.40 |
ResNet18-CIFAR10 | 89.52 |
ResNet50-ImageNet | 75.10 |
VGG16-CIFAR10 | 89.42 |
VGG16-CIFAR100 | 66.20 |
VGG16-ImageNet | 69.46 |
Activate conda environment (above) before running benchmarks
Synopsis
python src/${BENCH_NAME}.py [hpvm_reload|keras_reload] [frontend|keras_dump]
Parameters:
hpvm_reload
: Reloads HPVM weights (format used in model_params
found here: [ADD link to Google Drive]) from directory specified in Benchmark constructor.
keras_reload
: Reloads weights in Keras .h5
file format
frontend
: Invokes the HPVM frontend and dumps weights in directory specified in constructor
keras_dump
: Dumps keras .h5 format model weights in directory specified in constructor
Building New Benchmarks
All benchmarks inherit from the commom parent Benchmark
class.
Each benchmark overrides virtual functions for building the model, training, inference,
and data preprocessing.
def buildModel(self)
:
returns a keras model
def data_preprocess(self)
:
returns X_train, y_train, X_test, y_test, X_tuner, and y_tuner data — in that order; this data will be directly used later for training and inference
def trainModel(self, model, X_train, y_train, X_test, y_test)
:
returns a trained keras model