Skip to content
Snippets Groups Projects
Commit fd23f858 authored by Hashim Sharif's avatar Hashim Sharif
Browse files

renaming HPVM reload weights routine

parent 77b267a5
No related branches found
No related tags found
No related merge requests found
......@@ -159,7 +159,7 @@ def dumpCalibrationData2(file_name, test_data, labels_fname, test_labels):
# Loads Existing HPVM FP32 weights
def dumpHPVMToKerasModel(model, reload_dir, output_model, X_test, Y_test):
def reloadHPVMWeights(model, reload_dir, output_model, X_test, Y_test):
print ("***** Reloading pre-trained HPVM weights ****")
......
......@@ -7,7 +7,7 @@ from keras.utils.np_utils import to_categorical
from keras.models import load_model
from frontend.approxhpvm_translator import translate_to_approxhpvm
from frontend.weight_utils import dumpCalibrationData
from frontend.weight_utils import dumpHPVMToKerasModel
from frontend.weight_utils import reloadHPVMWeights
# Every CNN Benchmark must inherit from Benchmark class
......@@ -62,7 +62,8 @@ class Benchmark:
X_train, Y_train, X_test, Y_test = self.data_preprocess()
if argv[1] == "hpvm_reload":
model = dumpHPVMToKerasModel(model, self.reload_dir, self.keras_model_file, X_test, Y_test)
print ("loading weights .....\n\n")
model = reloadHPVMWeights(model, self.reload_dir, self.keras_model_file, X_test, Y_test)
if argv[1] == "keras_reload":
model = load_model(self.keras_model_file)
......
......@@ -19,9 +19,7 @@ import keras
import numpy as np
import os
from Benchmark import Benchmark
from frontend.approxhpvm_translator import translate_to_approxhpvm
from frontend.weight_utils import dumpCalibrationData
from frontend.weight_utils import dumpHPVMToKerasModel
......@@ -46,6 +44,8 @@ class AlexNet(Benchmark):
def buildModel(self):
print ("BuildModel ...")
activation_type = "tanh"
weight_decay = 1e-4
......@@ -138,16 +138,25 @@ class AlexNet(Benchmark):
def data_preprocess(self):
print ("Data Preprocess... \n")
(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()
print ("Data Loaded... \n")
X_train = X_train / 255.0
X_test = X_test / 255.0
print(X_train, X_test)
mean = np.mean(X_train,axis=(0,1,2,3))
std = np.std(X_train,axis=(0,1,2,3))
X_train = (X_train-mean)/(std+1e-7)
X_test = (X_test-mean)/(std+1e-7)
print(X_train, X_test)
return X_train, Y_train, X_test, Y_test
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment