Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
f28b8bd7
Commit
f28b8bd7
authored
5 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Moving AlexNet2 to new Benchmark Structure
parent
ef55d552
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
llvm/projects/keras/frontend/weight_utils.py
+1
-1
1 addition, 1 deletion
llvm/projects/keras/frontend/weight_utils.py
llvm/projects/keras/src/alexnet2.py
+101
-190
101 additions, 190 deletions
llvm/projects/keras/src/alexnet2.py
with
102 additions
and
191 deletions
llvm/projects/keras/frontend/weight_utils.py
+
1
−
1
View file @
f28b8bd7
...
...
@@ -196,6 +196,6 @@ def dumpHPVMToKerasModel(model, reload_dir, output_model, X_test, Y_test):
optimizer
=
Adam
(
lr
=
0.0001
,
decay
=
1e-6
),
metrics
=
[
'
accuracy
'
])
model
.
save
(
"
alexnet.h5
"
)
model
.
save
(
output_model
)
return
model
This diff is collapsed.
Click to expand it.
llvm/projects/keras/src/alexnet2.py
+
101
−
190
View file @
f28b8bd7
import
sys
import
keras
from
keras.models
import
Sequential
from
keras.utils
import
np_utils
...
...
@@ -11,233 +12,143 @@ from keras.callbacks import LearningRateScheduler
import
numpy
as
np
import
os
import
struct
from
Benchmark
import
Benchmark
from
keras
import
backend
as
K
from
approxhpvm_translator
import
translate_to_approxhpvm
from
frontend.
approxhpvm_translator
import
translate_to_approxhpvm
def
dumpWeights
(
file_name
,
weights
,
N
,
H
,
W
,
C
):
# NOTE: Writing the NHWC weights array as NCHW
f
=
open
(
file_name
,
"
wb
"
)
for
i
in
range
(
N
):
for
j
in
range
(
C
):
for
k
in
range
(
H
):
for
l
in
range
(
W
):
f
.
write
(
weights
[
i
][
k
][
l
][
j
])
class
AlexNet2
(
Benchmark
):
f
.
close
()
def
dumpConvWeights
(
file_name
,
weights
,
N
,
C
,
H
,
W
):
print
(
weights
.
shape
)
f
=
open
(
file_name
,
"
wb
"
)
for
i
in
range
(
N
):
for
j
in
range
(
C
):
for
k
in
range
(
H
):
for
l
in
range
(
W
):
f
.
write
(
weights
[
k
][
l
][
j
][
i
])
f
.
close
()
def
lr_schedule2
(
self
,
epoch
):
lrate
=
0.0005
if
epoch
>
100
:
lrate
=
0.0003
if
epoch
>
200
:
lrate
=
0.0002
if
epoch
>
250
:
lrate
=
0.0001
if
epoch
>
300
:
lrate
=
0.00003
return
lrate
def
dumpFcWeights
(
file_name
,
weights
,
H
,
W
):
print
(
weights
.
shape
)
def
buildModel
(
self
):
f
=
open
(
file_name
,
"
wb
"
)
for
i
in
range
(
H
):
for
j
in
range
(
W
):
f
.
write
(
weights
[
i
][
j
])
f
.
close
()
weight_decay
=
1e-4
activation_type
=
'
tanh
'
model
=
Sequential
()
model
.
add
(
Conv2D
(
32
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
),
input_shape
=
(
3
,
32
,
32
)
))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
Conv2D
(
32
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.2
))
def
dumpFcBias
(
file_name
,
bias
,
W
):
model
.
add
(
Conv2D
(
64
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
Conv2D
(
64
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.3
))
print
(
bias
.
shape
)
model
.
add
(
Conv2D
(
128
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
Conv2D
(
128
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.4
))
f
=
open
(
file_name
,
"
wb
"
)
for
i
in
range
(
W
):
f
.
write
(
bias
[
i
]
)
f
.
close
()
model
.
add
(
Flatten
()
)
model
.
add
(
Dense
(
self
.
num_classes
))
model
.
add
(
Activation
(
'
softmax
'
)
)
model
.
summary
()
return
model
def
dumpLabels
(
file_name
,
Y_test
):
f
=
open
(
file_name
,
"
wb
"
)
labels_map
=
{}
for
label
in
Y_test
:
label_val
=
np
.
int8
(
label
[
0
])
if
label_val
not
in
labels_map
:
labels_map
[
label_val
]
=
0
labels_map
[
label_val
]
+=
1
f
.
write
(
label_val
)
def
trainModel
(
self
,
model
):
f
.
close
()
(
x_train
,
y_train
),
(
x_test
,
y_test
)
=
cifar10
.
load_data
()
def
dumpData
(
X_test
,
file_name
,
N
,
C
,
H
,
W
):
test_labels
=
y_test
x_train
=
x_train
.
astype
(
'
float32
'
)
x_test
=
x_test
.
astype
(
'
float32
'
)
print
(
X_test
.
shape
)
f
=
open
(
file_name
,
"
wb
"
)
for
i
in
range
(
N
):
for
j
in
range
(
C
):
for
k
in
range
(
H
):
for
l
in
range
(
W
):
val
=
struct
.
unpack
(
"
f
"
,
struct
.
pack
(
"
f
"
,
X_test
[
i
][
j
][
k
][
l
]))
f
.
write
(
np
.
float32
(
val
[
0
]))
#z-score
mean
=
np
.
mean
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
std
=
np
.
std
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
x_train
=
(
x_train
-
mean
)
/
(
std
+
1e-7
)
x_test
=
(
x_test
-
mean
)
/
(
std
+
1e-7
)
f
.
close
()
y_train
=
np_utils
.
to_categorical
(
y_train
,
self
.
num_classes
)
y_test
=
np_utils
.
to_categorical
(
y_test
,
self
.
num_classes
)
#data augmentation
datagen
=
ImageDataGenerator
(
rotation_range
=
15
,
width_shift_range
=
0.1
,
height_shift_range
=
0.1
,
horizontal_flip
=
True
,
)
datagen
.
fit
(
x_train
)
#training
batch_size
=
64
opt_rms
=
keras
.
optimizers
.
rmsprop
(
lr
=
0.001
,
decay
=
1e-6
)
model
.
compile
(
loss
=
'
categorical_crossentropy
'
,
optimizer
=
opt_rms
,
metrics
=
[
'
accuracy
'
])
def
lr_schedule
(
epoch
):
lrate
=
0.001
if
epoch
>
75
:
lrate
=
0.0005
if
epoch
>
100
:
lrate
=
0.0003
return
lrate
model
.
fit_generator
(
datagen
.
flow
(
x_train
,
y_train
,
batch_size
=
batch_size
),
\
steps_per_epoch
=
x_train
.
shape
[
0
]
//
batch_size
,
#epochs=350,\
epochs
=
3
,
verbose
=
1
,
validation_data
=
(
x_test
,
y_test
),
\
callbacks
=
[
LearningRateScheduler
(
self
.
lr_schedule2
)])
return
model
def
lr_schedule2
(
epoch
):
lrate
=
0.0005
if
epoch
>
100
:
lrate
=
0.0003
if
epoch
>
200
:
lrate
=
0.0002
if
epoch
>
250
:
lrate
=
0.0001
if
epoch
>
300
:
lrate
=
0.00003
return
lrate
def
data_preprocess
(
self
):
K
.
set_image_data_format
(
'
channels_first
'
)
(
x_train
,
y_train
),
(
x_test
,
y_test
)
=
cifar10
.
load_data
()
x_train
=
x_train
.
astype
(
'
float32
'
)
x_test
=
x_test
.
astype
(
'
float32
'
)
(
x_train
,
y_train
),
(
x_test
,
y_test
)
=
cifar10
.
load_data
()
test_labels
=
y_test
x_train
=
x_train
.
astype
(
'
float32
'
)
x_test
=
x_test
.
astype
(
'
float32
'
)
#z-score
mean
=
np
.
mean
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
std
=
np
.
std
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
x_train
=
(
x_train
-
mean
)
/
(
std
+
1e-7
)
x_test
=
(
x_test
-
mean
)
/
(
std
+
1e-7
)
#z-score
mean
=
np
.
mean
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
std
=
np
.
std
(
x_train
,
axis
=
(
0
,
1
,
2
,
3
))
x_train
=
(
x_train
-
mean
)
/
(
std
+
1e-7
)
x_test
=
(
x_test
-
mean
)
/
(
std
+
1e-7
)
# Dumping test data and test labels
dir_prefix
=
"
/home/hsharif3/Gitlab/hpvm/llvm/projects/hpvm-tensor-rt/model_params/alexnet2_cifar10/
"
dumpLabels
(
dir_prefix
+
"
test_labels.bin
"
,
y_test
)
dumpData
(
x_test
,
dir_prefix
+
"
norm_cifar_input.bin
"
,
10000
,
3
,
32
,
32
)
num_classes
=
10
y_train
=
np_utils
.
to_categorical
(
y_train
,
num_classes
)
y_test
=
np_utils
.
to_categorical
(
y_test
,
num_classes
)
weight_decay
=
1e-4
activation_type
=
'
tanh
'
os
.
environ
[
"
CUDA_VISIBLE_DEVICES
"
]
=
"
0
"
model
=
Sequential
()
model
.
add
(
Conv2D
(
32
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
),
input_shape
=
x_train
.
shape
[
1
:]))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
Conv2D
(
32
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.2
))
model
.
add
(
Conv2D
(
64
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
Conv2D
(
64
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.3
))
model
.
add
(
Conv2D
(
128
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
Conv2D
(
128
,
(
3
,
3
),
padding
=
'
same
'
,
kernel_regularizer
=
regularizers
.
l2
(
weight_decay
)))
model
.
add
(
Activation
(
activation_type
))
#model.add(BatchNormalization())
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.4
))
model
.
add
(
Flatten
())
model
.
add
(
Dense
(
num_classes
))
model
.
add
(
Activation
(
'
softmax
'
))
model
.
summary
()
#data augmentation
datagen
=
ImageDataGenerator
(
rotation_range
=
15
,
width_shift_range
=
0.1
,
height_shift_range
=
0.1
,
horizontal_flip
=
True
,
)
datagen
.
fit
(
x_train
)
#training
batch_size
=
64
opt_rms
=
keras
.
optimizers
.
rmsprop
(
lr
=
0.001
,
decay
=
1e-6
)
model
.
compile
(
loss
=
'
categorical_crossentropy
'
,
optimizer
=
opt_rms
,
metrics
=
[
'
accuracy
'
])
model
.
fit_generator
(
datagen
.
flow
(
x_train
,
y_train
,
batch_size
=
batch_size
),
\
steps_per_epoch
=
x_train
.
shape
[
0
]
//
batch_size
,
#epochs=350,\
epochs
=
1
,
verbose
=
1
,
validation_data
=
(
x_test
,
y_test
),
callbacks
=
[
LearningRateScheduler
(
lr_schedule2
)])
#save to disk
model_json
=
model
.
to_json
()
with
open
(
'
model.json
'
,
'
w
'
)
as
json_file
:
json_file
.
write
(
model_json
)
model
.
save_weights
(
'
model.h5
'
)
return
x_train
,
y_train
,
x_test
,
y_test
#testing
scores
=
model
.
evaluate
(
x_test
,
y_test
,
batch_size
=
128
,
verbose
=
1
)
print
(
'
\n
Test result: %.3f loss: %.3f
'
%
(
scores
[
1
]
*
100
,
scores
[
0
]))
translate_to_approxhpvm
(
model
,
"
alexnet2_cifar10_test/
"
,
x_test
,
test_labels
,
"
alexnet2_cifar10/
"
,
y_test
)
sys
.
exit
(
0
)
if
__name__
==
"
__main__
"
:
os
.
environ
[
"
CUDA_VISIBLE_DEVICES
"
]
=
"
0
"
# Changing to NCHW format
K
.
set_image_data_format
(
'
channels_first
'
)
params
=
model
.
get_weights
()
dumpConvWeights
(
dir_prefix
+
"
conv1.bin
"
,
params
[
0
],
32
,
3
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv1_bias.bin
"
,
params
[
1
],
32
)
dumpConvWeights
(
dir_prefix
+
"
conv2.bin
"
,
params
[
2
],
32
,
32
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv2_bias.bin
"
,
params
[
3
],
32
)
dumpConvWeights
(
dir_prefix
+
"
conv3.bin
"
,
params
[
4
],
64
,
32
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv3_bias.bin
"
,
params
[
5
],
64
)
dumpConvWeights
(
dir_prefix
+
"
conv4.bin
"
,
params
[
6
],
64
,
64
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv4_bias.bin
"
,
params
[
7
],
64
)
dumpConvWeights
(
dir_prefix
+
"
conv5.bin
"
,
params
[
8
],
128
,
64
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv5_bias.bin
"
,
params
[
9
],
128
)
dumpConvWeights
(
dir_prefix
+
"
conv6.bin
"
,
params
[
10
],
128
,
128
,
3
,
3
)
dumpFcBias
(
dir_prefix
+
"
conv6_bias.bin
"
,
params
[
11
],
128
)
dumpFcWeights
(
dir_prefix
+
"
fc1.bin
"
,
params
[
12
],
2048
,
10
)
dumpFcBias
(
dir_prefix
+
"
fc1_bias.bin
"
,
params
[
13
],
10
)
### Parameters specific to each benchmark
reload_dir
=
"
/home/hsharif3/Gitlab/hpvm/llvm/projects/hpvm-tensor-rt/model_params/alexnet2_cifar10/
"
keras_model_file
=
"
alexnet2.h5
"
hpvm_dir
=
"
data/alexnet2_cifar10/
"
num_classes
=
10
alexnet2
=
AlexNet2
(
"
AlexNet2
"
,
reload_dir
,
keras_model_file
,
hpvm_dir
,
num_classes
)
alexnet2
.
run
(
sys
.
argv
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment