Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
daffb6ea
Commit
daffb6ea
authored
5 years ago
by
Yasmin Sarita
Browse files
Options
Downloads
Patches
Plain Diff
faster depthwise conv
parent
3239b2b6
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h
+320
-7
320 additions, 7 deletions
...hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h
with
320 additions
and
7 deletions
llvm/projects/hpvm-tensor-rt/tensor_runtime/include/approx_techniques.h
+
320
−
7
View file @
daffb6ea
...
...
@@ -124,6 +124,304 @@ __global__ void depthwise_conv(float* const __restrict__ y,
#undef x4d
}
__global__
void
depthwise_conv12
(
float
*
const
__restrict__
y
,
const
float
*
const
__restrict__
x
,
const
float
*
const
__restrict__
w
,
const
int
B
,
const
int
M
,
const
int
H
,
const
int
W
,
const
int
KH
,
const
int
KW
,
const
int
H_out
,
const
int
W_out
,
const
int
H_pad
,
const
int
W_pad
,
const
int
H_stride
,
const
int
W_stride
)
{
#define y4d(i3, i2, i1, i0) y[(i3) * (M * H_out * W_out) + (i2) * (H_out * W_out) + (i1) * (W_out) + i0]
#define x4d(i3, i2, i1, i0) x[(i3) * (M * H * W) + (i2) * (H * W) + (i1) * (W) + i0]
const
int
num
=
12
;
const
int
b
=
num
*
blockIdx
.
x
;
const
int
m
=
blockIdx
.
y
;
//current filter/channel
const
int
tx
=
threadIdx
.
x
;
const
int
start_h
=
(
threadIdx
.
x
/
W_out
)
*
H_stride
-
H_pad
;
const
int
start_w
=
(
threadIdx
.
x
%
W_out
)
*
W_stride
-
W_pad
;
float
C
[
num
]
=
{
0
};
const
float
*
weights
=
&
w
[
m
*
KH
*
KW
];
for
(
int
k
=
0
;
k
<
KH
*
KW
;
k
++
)
{
int
p
=
k
/
KW
;
int
q
=
k
%
KW
;
if
(
start_h
+
p
>
-
1
&&
start_h
+
p
<
H
&&
start_w
+
q
>
-
1
&&
start_w
+
q
<
W
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
//if(b + i < B)
C
[
i
]
+=
x4d
(
b
+
i
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
}
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
//if(b + i < B)
y4d
(
b
+
i
,
m
,
0
,
tx
)
=
C
[
i
];
}
#undef y4d
#undef x4d
}
__global__
void
depthwise_convNew
(
float
*
const
__restrict__
y
,
const
float
*
const
__restrict__
x
,
const
float
*
const
__restrict__
w
,
const
int
B
,
const
int
M
,
const
int
H
,
const
int
W
,
const
int
KH
,
const
int
KW
,
const
int
H_out
,
const
int
W_out
,
const
int
H_pad
,
const
int
W_pad
,
const
int
H_stride
,
const
int
W_stride
)
{
#define y4d(i3, i2, i1, i0) y[(i3) * (M * H_out * W_out) + (i2) * (H_out * W_out) + (i1) * (W_out) + i0]
#define x4d(i3, i2, i1, i0) x[(i3) * (M * H * W) + (i2) * (H * W) + (i1) * (W) + i0]
const
int
num
=
12
;
const
int
b
=
num
*
blockIdx
.
x
;
const
int
m
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
/
(
H_out
*
W_out
);
const
int
tx
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
%
(
H_out
*
W_out
);
const
int
start_h
=
(
tx
/
W_out
)
*
H_stride
-
H_pad
;
const
int
start_w
=
(
tx
%
W_out
)
*
W_stride
-
W_pad
;
float
C
[
num
]
=
{
0
};
const
float
*
weights
=
&
w
[
m
*
KH
*
KW
];
for
(
int
k
=
0
;
k
<
KH
*
KW
;
k
++
)
{
int
p
=
k
/
KW
;
int
q
=
k
%
KW
;
if
(
start_h
+
p
>
-
1
&&
start_h
+
p
<
H
&&
start_w
+
q
>
-
1
&&
start_w
+
q
<
W
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
if
(
b
+
i
<
B
)
C
[
i
]
+=
x4d
(
b
+
i
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
}
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
if
(
b
+
i
<
B
)
y4d
(
b
+
i
,
m
,
0
,
tx
)
=
C
[
i
];
}
#undef y4d
#undef x4d
}
__global__
void
depthwise_convNew8
(
float
*
const
__restrict__
y
,
const
float
*
const
__restrict__
x
,
const
float
*
const
__restrict__
w
,
const
int
B
,
const
int
M
,
const
int
H
,
const
int
W
,
const
int
KH
,
const
int
KW
,
const
int
H_out
,
const
int
W_out
,
const
int
H_pad
,
const
int
W_pad
,
const
int
H_stride
,
const
int
W_stride
)
{
#define y4d(i3, i2, i1, i0) y[(i3) * (M * H_out * W_out) + (i2) * (H_out * W_out) + (i1) * (W_out) + i0]
#define x4d(i3, i2, i1, i0) x[(i3) * (M * H * W) + (i2) * (H * W) + (i1) * (W) + i0]
const
int
num
=
8
;
const
int
b
=
num
*
blockIdx
.
x
;
const
int
m
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
/
(
H_out
*
W_out
);
if
(
m
<
M
){
const
int
tx
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
%
(
H_out
*
W_out
);
const
int
start_h
=
(
tx
/
W_out
)
*
H_stride
-
H_pad
;
const
int
start_w
=
(
tx
%
W_out
)
*
W_stride
-
W_pad
;
float
c0
=
0
;
float
c1
=
0
;
float
c2
=
0
;
float
c3
=
0
;
float
c4
=
0
;
float
c5
=
0
;
float
c6
=
0
;
float
c7
=
0
;
const
float
*
weights
=
&
w
[
m
*
KH
*
KW
];
for
(
int
k
=
0
;
k
<
KH
*
KW
;
k
++
)
{
int
p
=
k
/
KW
;
int
q
=
k
%
KW
;
if
(
start_h
+
p
>
-
1
&&
start_h
+
p
<
H
&&
start_w
+
q
>
-
1
&&
start_w
+
q
<
W
)
{
c0
+=
x4d
(
b
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
1
<
B
)
c1
+=
x4d
(
b
+
1
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
2
<
B
)
c2
+=
x4d
(
b
+
2
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
3
<
B
)
c3
+=
x4d
(
b
+
3
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
4
<
B
)
c4
+=
x4d
(
b
+
4
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
5
<
B
)
c5
+=
x4d
(
b
+
5
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
6
<
B
)
c6
+=
x4d
(
b
+
6
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
7
<
B
)
c7
+=
x4d
(
b
+
7
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
}
}
y4d
(
b
,
m
,
0
,
tx
)
=
c0
;
if
(
b
+
1
<
B
)
y4d
(
b
+
1
,
m
,
0
,
tx
)
=
c1
;
if
(
b
+
2
<
B
)
y4d
(
b
+
2
,
m
,
0
,
tx
)
=
c2
;
if
(
b
+
3
<
B
)
y4d
(
b
+
3
,
m
,
0
,
tx
)
=
c3
;
if
(
b
+
4
<
B
)
y4d
(
b
+
4
,
m
,
0
,
tx
)
=
c4
;
if
(
b
+
5
<
B
)
y4d
(
b
+
5
,
m
,
0
,
tx
)
=
c5
;
if
(
b
+
6
<
B
)
y4d
(
b
+
6
,
m
,
0
,
tx
)
=
c6
;
if
(
b
+
7
<
B
)
y4d
(
b
+
7
,
m
,
0
,
tx
)
=
c7
;
}
#undef y4d
#undef x4d
}
__global__
void
depthwise_convNew12
(
float
*
const
__restrict__
y
,
const
float
*
const
__restrict__
x
,
const
float
*
const
__restrict__
w
,
const
int
B
,
const
int
M
,
const
int
H
,
const
int
W
,
const
int
KH
,
const
int
KW
,
const
int
H_out
,
const
int
W_out
,
const
int
H_pad
,
const
int
W_pad
,
const
int
H_stride
,
const
int
W_stride
)
{
#define y4d(i3, i2, i1, i0) y[(i3) * (M * H_out * W_out) + (i2) * (H_out * W_out) + (i1) * (W_out) + i0]
#define x4d(i3, i2, i1, i0) x[(i3) * (M * H * W) + (i2) * (H * W) + (i1) * (W) + i0]
const
int
num
=
12
;
const
int
b
=
num
*
blockIdx
.
x
;
const
int
m
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
/
(
H_out
*
W_out
);
if
(
m
<
M
){
const
int
tx
=
(
blockIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
)
%
(
H_out
*
W_out
);
const
int
start_h
=
(
tx
/
W_out
)
*
H_stride
-
H_pad
;
const
int
start_w
=
(
tx
%
W_out
)
*
W_stride
-
W_pad
;
float
c0
=
0
;
float
c1
=
0
;
float
c2
=
0
;
float
c3
=
0
;
float
c4
=
0
;
float
c5
=
0
;
float
c6
=
0
;
float
c7
=
0
;
float
c8
=
0
;
float
c9
=
0
;
float
c10
=
0
;
float
c11
=
0
;
const
float
*
weights
=
&
w
[
m
*
KH
*
KW
];
for
(
int
k
=
0
;
k
<
KH
*
KW
;
k
++
)
{
int
p
=
k
/
KW
;
int
q
=
k
%
KW
;
if
(
start_h
+
p
>
-
1
&&
start_h
+
p
<
H
&&
start_w
+
q
>
-
1
&&
start_w
+
q
<
W
)
{
c0
+=
x4d
(
b
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
1
<
B
)
c1
+=
x4d
(
b
+
1
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
2
<
B
)
c2
+=
x4d
(
b
+
2
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
3
<
B
)
c3
+=
x4d
(
b
+
3
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
4
<
B
)
c4
+=
x4d
(
b
+
4
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
5
<
B
)
c5
+=
x4d
(
b
+
5
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
6
<
B
)
c6
+=
x4d
(
b
+
6
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
7
<
B
)
c7
+=
x4d
(
b
+
7
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
8
<
B
)
c8
+=
x4d
(
b
+
8
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
9
<
B
)
c9
+=
x4d
(
b
+
9
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
10
<
B
)
c10
+=
x4d
(
b
+
10
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
if
(
b
+
11
<
B
)
c11
+=
x4d
(
b
+
11
,
m
,
start_h
+
p
,
start_w
+
q
)
*
weights
[
k
];
}
}
y4d
(
b
,
m
,
0
,
tx
)
=
c0
;
if
(
b
+
1
<
B
)
y4d
(
b
+
1
,
m
,
0
,
tx
)
=
c1
;
if
(
b
+
2
<
B
)
y4d
(
b
+
2
,
m
,
0
,
tx
)
=
c2
;
if
(
b
+
3
<
B
)
y4d
(
b
+
3
,
m
,
0
,
tx
)
=
c3
;
if
(
b
+
4
<
B
)
y4d
(
b
+
4
,
m
,
0
,
tx
)
=
c4
;
if
(
b
+
5
<
B
)
y4d
(
b
+
5
,
m
,
0
,
tx
)
=
c5
;
if
(
b
+
6
<
B
)
y4d
(
b
+
6
,
m
,
0
,
tx
)
=
c6
;
if
(
b
+
7
<
B
)
y4d
(
b
+
7
,
m
,
0
,
tx
)
=
c7
;
if
(
b
+
8
<
B
)
y4d
(
b
+
8
,
m
,
0
,
tx
)
=
c8
;
if
(
b
+
9
<
B
)
y4d
(
b
+
9
,
m
,
0
,
tx
)
=
c9
;
if
(
b
+
10
<
B
)
y4d
(
b
+
10
,
m
,
0
,
tx
)
=
c10
;
if
(
b
+
11
<
B
)
y4d
(
b
+
11
,
m
,
0
,
tx
)
=
c11
;
}
#undef y4d
#undef x4d
}
void
*
tensorConvCutlass
(
void
*
input_ptr
,
void
*
filter_ptr
,
int
vertical_pad
,
int
horizontal_pad
,
int
vertical_stride
,
int
horizontal_stride
,
...
...
@@ -176,22 +474,37 @@ void* tensorConvCutlass(void* input_ptr, void* filter_ptr,
KH, KW, h, w, vertical_pad, horizontal_pad, vertical_stride, horizontal_stride);
}*/
dim3
grid
((
n
/
8
),
c
);
/*
dim3 grid((n / 12), c);
dim3 block(h * w);
depthwise_conv
8
<<<
grid
,
block
>>>
((
float
*
)
output
->
gpu_data
,
depthwise_conv
12
<<<grid, block >>> ((float*)output->gpu_data,
(float*)input->gpu_data, (float*)filter->gpu_data,
input->dims.dim_sizes[0], input->dims.dim_sizes[1], input->dims.dim_sizes[2], input->dims.dim_sizes[3],
KH, KW, h, w, vertical_pad, horizontal_pad, vertical_stride, horizontal_stride);
if
(
n
%
8
>
0
){
dim3
grid2
((
n
%
8
),
c
);
if(n %
12
> 0){
dim3 grid2((n %
12
), c);
dim3 block(h * w);
depthwise_conv <<<grid, block >>> ((float*)output->gpu_data,
(float*)input->gpu_data, (float*)filter->gpu_data,
input->dims.dim_sizes[0], input->dims.dim_sizes[1], input->dims.dim_sizes[2], input->dims.dim_sizes[3],
KH
,
KW
,
h
,
w
,
vertical_pad
,
horizontal_pad
,
vertical_stride
,
horizontal_stride
,
8
*
(
n
/
8
));
}
KH, KW, h, w, vertical_pad, horizontal_pad, vertical_stride, horizontal_stride, 12 * (n/12));
}
*/
int
blockSize
;
if
(
h
*
w
>
1023
)
blockSize
=
256
;
else
blockSize
=
128
;
dim3
grid
(((
n
+
7
)
/
8
),
(
c
*
h
*
w
+
blockSize
-
1
)
/
blockSize
);
dim3
block
(
blockSize
);
depthwise_convNew8
<<<
grid
,
block
>>>
((
float
*
)
output
->
gpu_data
,
(
float
*
)
input
->
gpu_data
,
(
float
*
)
filter
->
gpu_data
,
input
->
dims
.
dim_sizes
[
0
],
input
->
dims
.
dim_sizes
[
1
],
input
->
dims
.
dim_sizes
[
2
],
input
->
dims
.
dim_sizes
[
3
],
KH
,
KW
,
h
,
w
,
vertical_pad
,
horizontal_pad
,
vertical_stride
,
horizontal_stride
);
}
else
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment