Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
d0cbb1f2
Commit
d0cbb1f2
authored
5 years ago
by
nz11
Browse files
Options
Downloads
Patches
Plain Diff
mobilenetv2 with batch norm
parent
c5b85da7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/keras/src/mobilenetv2_cifar10.py
+182
-0
182 additions, 0 deletions
llvm/projects/keras/src/mobilenetv2_cifar10.py
with
182 additions
and
0 deletions
llvm/projects/keras/src/mobilenetv2_cifar10.py
+
182
−
0
View file @
d0cbb1f2
import
sys
import
os
os
.
environ
[
'
CUDA_VISIBLE_DEVICES
'
]
=
'
1
'
from
keras.models
import
Sequential
from
keras.layers
import
*
from
keras.datasets
import
cifar10
from
keras.utils
import
to_categorical
from
keras.callbacks
import
*
from
keras.preprocessing.image
import
ImageDataGenerator
from
keras.models
import
Model
from
keras
import
optimizers
import
keras.backend
as
K
K
.
set_image_data_format
(
'
channels_first
'
)
(
X_train
,
y_train
),
(
X_test
,
y_test
)
=
cifar10
.
load_data
()
test_labels
=
y_test
print
(
"
X_train.shape =
"
,
X_train
.
shape
)
print
(
"
X_test.shape =
"
,
X_test
.
shape
)
X_train
=
X_train
.
astype
(
'
float32
'
)
X_test
=
X_test
.
astype
(
'
float32
'
)
mean
=
np
.
mean
(
X_train
,
axis
=
(
0
,
1
,
2
),
keepdims
=
True
)
std
=
np
.
std
(
X_train
,
axis
=
(
0
,
1
,
2
),
keepdims
=
True
)
X_train
=
(
X_train
-
mean
)
/
(
std
+
1e-9
)
X_test
=
(
X_test
-
mean
)
/
(
std
+
1e-9
)
y_train
=
to_categorical
(
y_train
,
num_classes
=
10
)
y_test
=
to_categorical
(
y_test
,
num_classes
=
10
)
def
_make_divisible
(
v
,
divisor
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
# define the calcuration of each 'Res_Block'
def
_inverted_res_block
(
inputs
,
expansion
,
stride
,
alpha
,
filters
,
block_id
):
prefix
=
'
block_{}_
'
.
format
(
block_id
)
in_channels
=
inputs
.
_keras_shape
[
-
1
]
pointwise_conv_filters
=
int
(
filters
*
alpha
)
pointwise_filters
=
_make_divisible
(
pointwise_conv_filters
,
8
)
x
=
inputs
# Expand
if
block_id
:
x
=
Conv2D
(
expansion
*
in_channels
,
kernel_size
=
1
,
strides
=
1
,
padding
=
'
same
'
,
use_bias
=
False
,
activation
=
None
,
kernel_initializer
=
"
he_normal
"
,
kernel_regularizer
=
regularizers
.
l2
(
4e-5
),
name
=
prefix
+
'
expand
'
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
expand_BN
'
)(
x
)
x
=
ReLU
(
6.
,
name
=
prefix
+
'
expand_relu
'
)(
x
)
else
:
prefix
=
'
expanded_conv_
'
# Depthwise
x
=
DepthwiseConv2D
(
kernel_size
=
3
,
strides
=
stride
,
activation
=
None
,
use_bias
=
False
,
padding
=
'
same
'
,
kernel_initializer
=
"
he_normal
"
,
depthwise_regularizer
=
regularizers
.
l2
(
4e-5
),
name
=
prefix
+
'
depthwise
'
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
depthwise_BN
'
)(
x
)
x
=
ReLU
(
6.
,
name
=
prefix
+
'
depthwise_relu
'
)(
x
)
# Project
x
=
Conv2D
(
pointwise_filters
,
kernel_size
=
1
,
strides
=
1
,
padding
=
'
same
'
,
use_bias
=
False
,
activation
=
None
,
kernel_initializer
=
"
he_normal
"
,
kernel_regularizer
=
regularizers
.
l2
(
4e-5
),
name
=
prefix
+
'
project
'
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
project_BN
'
)(
x
)
if
in_channels
==
pointwise_filters
and
stride
==
1
:
return
Add
(
name
=
prefix
+
'
add
'
)([
inputs
,
x
])
return
x
# build MobileNetV2 models
def
get_mobilenetv2
(
alpha
=
1.0
,
depth_multiplier
=
1
):
# fileter size (first block)
first_block_filters
=
_make_divisible
(
32
*
alpha
,
8
)
# input shape (first block)
img_input
=
Input
(
shape
=
input_shape
)
# model architechture
x
=
Conv2D
(
first_block_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'
same
'
,
use_bias
=
False
,
kernel_initializer
=
"
he_normal
"
,
kernel_regularizer
=
regularizers
.
l2
(
4e-5
),
name
=
'
Conv1
'
)(
img_input
)
#x = BatchNormalization(epsilon=1e-3, momentum=0.999, name='bn_Conv1')(x)
#x = ReLU(6., name='Conv1_relu')(x)
x
=
_inverted_res_block
(
x
,
filters
=
16
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
1
,
block_id
=
0
)
x
=
_inverted_res_block
(
x
,
filters
=
24
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
1
)
x
=
_inverted_res_block
(
x
,
filters
=
24
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
2
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
3
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
4
)
x
=
_inverted_res_block
(
x
,
filters
=
32
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
5
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
6
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
7
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
8
)
x
=
_inverted_res_block
(
x
,
filters
=
64
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
9
)
x
=
Dropout
(
rate
=
0.25
)(
x
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
10
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
11
)
x
=
_inverted_res_block
(
x
,
filters
=
96
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
12
)
x
=
Dropout
(
rate
=
0.25
)(
x
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
2
,
expansion
=
6
,
block_id
=
13
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
14
)
x
=
_inverted_res_block
(
x
,
filters
=
160
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
15
)
x
=
Dropout
(
rate
=
0.25
)(
x
)
x
=
_inverted_res_block
(
x
,
filters
=
320
,
alpha
=
alpha
,
stride
=
1
,
expansion
=
6
,
block_id
=
16
)
x
=
Dropout
(
rate
=
0.25
)(
x
)
# define fileter size (last block)
if
alpha
>
1.0
:
last_block_filters
=
_make_divisible
(
1280
*
alpha
,
8
)
else
:
last_block_filters
=
1280
x
=
Conv2D
(
last_block_filters
,
kernel_size
=
1
,
use_bias
=
False
,
kernel_initializer
=
"
he_normal
"
,
kernel_regularizer
=
regularizers
.
l2
(
4e-5
),
name
=
'
Conv_1
'
)(
x
)
x
=
BatchNormalization
(
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
'
Conv_1_bn
'
)(
x
)
x
=
ReLU
(
6.
,
name
=
'
out_relu
'
)(
x
)
x
=
AveragePooling2D
(
pool_size
=
2
)(
x
)
x
=
Flatten
()(
x
)
x
=
Dense
(
10
,
activation
=
'
softmax
'
)(
x
)
model
=
Model
(
inputs
=
img_input
,
outputs
=
x
)
return
model
# data augmentation, horizontal flips only
datagen
=
ImageDataGenerator
(
featurewise_center
=
False
,
featurewise_std_normalization
=
False
,
rotation_range
=
0.0
,
width_shift_range
=
0.0
,
height_shift_range
=
0.0
,
vertical_flip
=
False
,
horizontal_flip
=
True
)
datagen
.
fit
(
X_train
)
model
=
get_mobilenetv2
()
learning_rates
=
[]
for
i
in
range
(
5
):
learning_rates
.
append
(
2e-2
)
for
i
in
range
(
50
-
5
):
learning_rates
.
append
(
1e-2
)
for
i
in
range
(
100
-
50
):
learning_rates
.
append
(
8e-3
)
for
i
in
range
(
150
-
100
):
learning_rates
.
append
(
4e-3
)
for
i
in
range
(
200
-
150
):
learning_rates
.
append
(
2e-3
)
for
i
in
range
(
300
-
200
):
learning_rates
.
append
(
1e-3
)
callbacks
=
[
LearningRateScheduler
(
lambda
epoch
:
float
(
learning_rates
[
epoch
]))
]
model
.
compile
(
optimizer
=
optimizers
.
SGD
(
lr
=
learning_rates
[
0
],
momentum
=
0.9
,
decay
=
0.0
,
nesterov
=
False
),
loss
=
'
categorical_crossentropy
'
,
metrics
=
[
'
accuracy
'
])
model
.
fit_generator
(
datagen
.
flow
(
X_train
,
y_train
,
batch_size
=
128
),
steps_per_epoch
=
int
(
np
.
ceil
(
50000
/
128
)),
validation_data
=
(
X_test
,
y_test
),
epochs
=
300
,
callbacks
=
callbacks
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment