Skip to content
Snippets Groups Projects
Commit ad3b24df authored by Akash Kothari's avatar Akash Kothari
Browse files

Moved out the HPVM intrinsics table file from the LLVM source tree

parent 90bc4238
No related branches found
No related tags found
No related merge requests found
//===- IntrinsicsVISC.td - Defines VISC intrinsics ---------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines all of the VISC-specific intrinsics.
//
//===----------------------------------------------------------------------===//
let TargetPrefix = "visc" in {
/* All intrinsics start with "llvm.visc."
* As we do not want the compiler to mess with these intrinsics, we assume
* worst memory behavior for all these intrinsics.
*/
/* Initialization intrinsic -
* i8* llvm.visc.setup(function*);
*/
def int_visc_init : Intrinsic<[], [], []>;
/* Launch intrinsic - with streaming argument
* i8* llvm.visc.launch(i8*, ArgList*, i1);
*/
def int_visc_launch : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty, llvm_i1_ty], []>;
/* Push intrinsic - push data on streaming pipeline
* void llvm.visc.push(i8*, ArgList*);
*/
def int_visc_push : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty], []>;
/* Pop intrinsic - pop data from streaming pipeline
* i8* llvm.visc.pop(i8*);
*/
def int_visc_pop : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Cleanup intrinsic -
* void llvm.visc.cleanup(i8*);
*/
def int_visc_cleanup : Intrinsic<[], [], []>;
/* Wait intrinsic -
* void llvm.visc.wait(graphID*);
*/
def int_visc_wait : Intrinsic<[], [llvm_ptr_ty], []>;
/* Track memory intrinsic -
* void llvm.visc.trackMemory(i8*, i64);
*/
def int_visc_trackMemory : Intrinsic<[], [llvm_ptr_ty, llvm_i64_ty], []>;
/* Track memory intrinsic -
* void llvm.visc.untrackMemory(i8*);
*/
def int_visc_untrackMemory : Intrinsic<[], [llvm_ptr_ty], []>;
/* Request memory intrinsic -
* void llvm.visc.requestMemory(i8*, i64);
*/
def int_visc_requestMemory : Intrinsic<[], [llvm_ptr_ty, llvm_i64_ty], []>;
/* Create Node intrinsic -
* i8* llvm.visc.createNode(function*);
*/
def int_visc_createNode : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Create Node 1D array intrinsic -
* i8* llvm.visc.createNode1D(function*, i64);
*/
def int_visc_createNode1D : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i64_ty], []>;
/* Create Node 2D array intrinsic -
* i8* llvm.visc.createNode2D(function*, i64, i64);
*/
def int_visc_createNode2D : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i64_ty, llvm_i64_ty], []>;
/* Create Node 3D array intrinsic -
* i8* llvm.visc.createNode2D(function*, i64, i64, i64);
*/
def int_visc_createNode3D : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i64_ty, llvm_i64_ty, llvm_i64_ty],
[]>;
/* Create dataflow edge intrinsic -
* i8* llvm.visc.createEdge(i8*, i8*, i1, i32, i32, i1);
*/
def int_visc_createEdge : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_ptr_ty,
llvm_i1_ty, llvm_i32_ty, llvm_i32_ty,
llvm_i1_ty],
[]>;
/* Create bind input intrinsic -
* void llvm.visc.bind.input(i8*, i32, i32);
*/
def int_visc_bind_input : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty,
llvm_i32_ty, llvm_i1_ty], []>;
/* Create bind output intrinsic -
* void llvm.visc.bind.output(i8*, i32, i32);
*/
def int_visc_bind_output : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty,
llvm_i32_ty, llvm_i1_ty], []>;
/* Find associated dataflow node intrinsic -
* i8* llvm.visc.getNode();
*/
def int_visc_getNode : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
/* Find parent dataflow node intrinsic -
* i8* llvm.visc.getParentNode(i8*);
*/
def int_visc_getParentNode : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], [IntrNoMem]>;
/* Find the number of dimensions of a dataflow node intrinsic -
* i32 llvm.visc.getNumDims(i8*);
*/
def int_visc_getNumDims : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty], [IntrNoMem]>;
/* Find the unique indentifier of a dataflow node (with respect to his parent
* node) in the specified dimension intrinsic -
*/
/* i64 llvm.visc.getNodeInstanceID.[xyz](i8*);
*/
def int_visc_getNodeInstanceID_x : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
def int_visc_getNodeInstanceID_y : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
def int_visc_getNodeInstanceID_z : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
/* Find the number of instances of a dataflow node in the specified dimension
* intrinsic -
*/
/* i64 llvm.visc.getNumNodeInstances.[xyz](i8*);
*/
def int_visc_getNumNodeInstances_x : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
def int_visc_getNumNodeInstances_y : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
def int_visc_getNumNodeInstances_z : Intrinsic<[llvm_i64_ty], [llvm_ptr_ty],
[IntrNoMem]>;
/* Local Barrier
* void llvm.visc.barrier();
*/
def int_visc_barrier : Intrinsic<[], [], []>;
/* Memory allocation inside the graph
* i8* llvm.visc.malloc();
*/
def int_visc_malloc : Intrinsic<[llvm_ptr_ty], [llvm_i64_ty], []>;
/* Find the vector length supported by target architecture
* intrinsic -
* i32 llvm.visc.getVectorLength();
*/
def int_visc_getVectorLength : Intrinsic<[llvm_i32_ty], [], []>;
/* ============ Atomic intrinsics ============= */
// Atomic arithmetic operations
/* i32 llvm.visc.atomic.cmpxchg(i32*, i32)*/
def int_visc_atomic_cmpxchg: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty,
llvm_i32_ty], []>;
/* i32 llvm.visc.atomic.add(i32*, i32)*/
def int_visc_atomic_add: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.sub(i32*, i32)*/
def int_visc_atomic_sub: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.xchg(i32*, i32)*/
def int_visc_atomic_xchg: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.inc(i32*, i32)*/
def int_visc_atomic_inc: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty],
[]>;
/* i32 llvm.visc.atomic.dec(i32*, i32)*/
def int_visc_atomic_dec: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty],
[]>;
/* i32 llvm.visc.atomic.min(i32*, i32)*/
def int_visc_atomic_min: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.umin(i32*, i32)*/
def int_visc_atomic_umin: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.maxi32*, i32)*/
def int_visc_atomic_max: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.umaxi32*, i32)*/
def int_visc_atomic_umax: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
// Atomic bitwise operations
/* i32 llvm.visc.atomic.and(i32*, i32)*/
def int_visc_atomic_and: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.or(i32*, i32)*/
def int_visc_atomic_or: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/* i32 llvm.visc.atomic.xor(i32*, i32)*/
def int_visc_atomic_xor: Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty],
[]>;
/***************************************************************************/
/* ApproxHPVM intrinsics */
/***************************************************************************/
/* Tensor add intrinsic
* i8* llvm.visc.tensor.add(i8*, i8*);
*/
def int_visc_tensor_add : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty], []>;
/* Tensor mul intrinsic
* i8* llvm.visc.tensor.mul(i8*, i8*);
*/
def int_visc_tensor_mul : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty], []>;
/* Tensor relu intrinsic
* i8* llvm.visc.tensor.relu(i8*);
*/
def int_visc_tensor_relu : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Tensor clipped relu intrinsic
* i8* llvm.visc.tensor.clipped.relu(i8*);
*/
def int_visc_tensor_clipped_relu : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Tensor tanh intrinsic
* i8* llvm.visc.tensor.tanh(i8*);
*/
def int_visc_tensor_tanh : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Tensor sigmoid intrinsic
* i8* llvm.visc.tensor.sigmoid(i8*);
*/
def int_visc_tensor_sigmoid : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Tensor softmax intrinsic
* i8* llvm.visc.tensor.softmax(i8*);
*/
def int_visc_tensor_softmax : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], []>;
/* Tensor convolution intrinsic
* i8* llvm.visc.tensor.convolution(i8*, i8*, i32, i32, i32, i32);
*/
def int_visc_tensor_convolution : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty], []>;
/* Tensor group convolution intrinsic
* i8* llvm.visc.tensor.group.convolution(i8*, i8*, i32, i32, i32, i32, i32, i32);
*/
def int_visc_tensor_group_convolution : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty], []>;
/* Tensor BatchNorm intrinsic
* i8* llvm.visc.tensor.batchnorm(i8*, i8*, i8*, i8*, i8*, double);
*/
def int_visc_tensor_batchnorm : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_ptr_ty,
llvm_ptr_ty,
llvm_ptr_ty,
llvm_ptr_ty,
llvm_double_ty], []>;
/* Tensor pool intrinsics: max, min, average
* i8* llvm.visc.tensor.pool.max(i8*, i32, i32, i32, i32, i32, i32);
* i8* llvm.visc.tensor.pool.min(i8*, i32, i32, i32, i32, i32, i32);
* i8* llvm.visc.tensor.pool.average(i8*, i32, i32, i32, i32, i32, i32);
*/
def int_visc_tensor_pool_max : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty], []>;
def int_visc_tensor_pool_min : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty], []>;
def int_visc_tensor_pool_mean : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty,
llvm_i32_ty], []>;
def int_visc_node_id : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], []>;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment