Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
a4f3627d
Commit
a4f3627d
authored
5 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Adding Alexnet2 source with Mini-batching Loop
parent
31fa1c61
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet2/src/alexnet2_loop.cpp
+530
-0
530 additions, 0 deletions
.../DNN_Benchmarks/benchmarks/alexnet2/src/alexnet2_loop.cpp
with
530 additions
and
0 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet2/src/alexnet2_loop.cpp
0 → 100644
+
530
−
0
View file @
a4f3627d
#include
<stdio.h>
#include
<stdlib.h>
#include
<unistd.h>
#include
<fcntl.h>
#include
<sys/stat.h>
#include
<cstring>
#include
<visc.h>
#include
<tensorTypes.h>
#include
<tensorUtils.h>
void
var_0_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_1_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_2_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_3_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_4_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_5_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_6_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_7_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_8_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_9_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_10_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_11_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_12_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_13_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_14_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_15_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_16_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_17_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_18_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_19_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_20_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_21_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_mul
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_22_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_23_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_softmax
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
root
(
void
*
input
,
size_t
input_bytes
,
void
*
conv2d_1_w
,
size_t
conv2d_1_w_bytes
,
void
*
conv2d_1_b
,
size_t
conv2d_1_b_bytes
,
void
*
conv2d_2_w
,
size_t
conv2d_2_w_bytes
,
void
*
conv2d_2_b
,
size_t
conv2d_2_b_bytes
,
void
*
conv2d_3_w
,
size_t
conv2d_3_w_bytes
,
void
*
conv2d_3_b
,
size_t
conv2d_3_b_bytes
,
void
*
conv2d_4_w
,
size_t
conv2d_4_w_bytes
,
void
*
conv2d_4_b
,
size_t
conv2d_4_b_bytes
,
void
*
conv2d_5_w
,
size_t
conv2d_5_w_bytes
,
void
*
conv2d_5_b
,
size_t
conv2d_5_b_bytes
,
void
*
conv2d_6_w
,
size_t
conv2d_6_w_bytes
,
void
*
conv2d_6_b
,
size_t
conv2d_6_b_bytes
,
void
*
dense_1_w
,
size_t
dense_1_w_bytes
,
void
*
dense_1_b
,
size_t
dense_1_b_bytes
){
__visc__hint
(
visc
::
CPU_TARGET
);
__visc__attributes
(
15
,
input
,
conv2d_1_w
,
conv2d_1_b
,
conv2d_2_w
,
conv2d_2_b
,
conv2d_3_w
,
conv2d_3_b
,
conv2d_4_w
,
conv2d_4_b
,
conv2d_5_w
,
conv2d_5_b
,
conv2d_6_w
,
conv2d_6_b
,
dense_1_w
,
dense_1_b
,
0
);
void
*
var_0
=
__visc__createNodeND
(
0
,
var_0_node
);
__visc__bindIn
(
var_0
,
0
,
0
,
0
);
__visc__bindIn
(
var_0
,
1
,
1
,
0
);
__visc__bindIn
(
var_0
,
2
,
2
,
0
);
__visc__bindIn
(
var_0
,
3
,
3
,
0
);
void
*
var_1
=
__visc__createNodeND
(
0
,
var_1_node
);
__visc__edge
(
var_0
,
var_1
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_0
,
var_1
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_1
,
4
,
2
,
0
);
__visc__bindIn
(
var_1
,
5
,
3
,
0
);
void
*
var_2
=
__visc__createNodeND
(
0
,
var_2_node
);
__visc__edge
(
var_1
,
var_2
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_1
,
var_2
,
1
,
1
,
1
,
0
);
void
*
var_3
=
__visc__createNodeND
(
0
,
var_3_node
);
__visc__edge
(
var_2
,
var_3
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_2
,
var_3
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_3
,
6
,
2
,
0
);
__visc__bindIn
(
var_3
,
7
,
3
,
0
);
void
*
var_4
=
__visc__createNodeND
(
0
,
var_4_node
);
__visc__edge
(
var_3
,
var_4
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_3
,
var_4
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_4
,
8
,
2
,
0
);
__visc__bindIn
(
var_4
,
9
,
3
,
0
);
void
*
var_5
=
__visc__createNodeND
(
0
,
var_5_node
);
__visc__edge
(
var_4
,
var_5
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_4
,
var_5
,
1
,
1
,
1
,
0
);
void
*
var_6
=
__visc__createNodeND
(
0
,
var_6_node
);
__visc__edge
(
var_5
,
var_6
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_5
,
var_6
,
1
,
1
,
1
,
0
);
void
*
var_7
=
__visc__createNodeND
(
0
,
var_7_node
);
__visc__edge
(
var_6
,
var_7
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_6
,
var_7
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_7
,
10
,
2
,
0
);
__visc__bindIn
(
var_7
,
11
,
3
,
0
);
void
*
var_8
=
__visc__createNodeND
(
0
,
var_8_node
);
__visc__edge
(
var_7
,
var_8
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_7
,
var_8
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_8
,
12
,
2
,
0
);
__visc__bindIn
(
var_8
,
13
,
3
,
0
);
void
*
var_9
=
__visc__createNodeND
(
0
,
var_9_node
);
__visc__edge
(
var_8
,
var_9
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_8
,
var_9
,
1
,
1
,
1
,
0
);
void
*
var_10
=
__visc__createNodeND
(
0
,
var_10_node
);
__visc__edge
(
var_9
,
var_10
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_9
,
var_10
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_10
,
14
,
2
,
0
);
__visc__bindIn
(
var_10
,
15
,
3
,
0
);
void
*
var_11
=
__visc__createNodeND
(
0
,
var_11_node
);
__visc__edge
(
var_10
,
var_11
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_10
,
var_11
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_11
,
16
,
2
,
0
);
__visc__bindIn
(
var_11
,
17
,
3
,
0
);
void
*
var_12
=
__visc__createNodeND
(
0
,
var_12_node
);
__visc__edge
(
var_11
,
var_12
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_11
,
var_12
,
1
,
1
,
1
,
0
);
void
*
var_13
=
__visc__createNodeND
(
0
,
var_13_node
);
__visc__edge
(
var_12
,
var_13
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_12
,
var_13
,
1
,
1
,
1
,
0
);
void
*
var_14
=
__visc__createNodeND
(
0
,
var_14_node
);
__visc__edge
(
var_13
,
var_14
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_13
,
var_14
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_14
,
18
,
2
,
0
);
__visc__bindIn
(
var_14
,
19
,
3
,
0
);
void
*
var_15
=
__visc__createNodeND
(
0
,
var_15_node
);
__visc__edge
(
var_14
,
var_15
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_14
,
var_15
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_15
,
20
,
2
,
0
);
__visc__bindIn
(
var_15
,
21
,
3
,
0
);
void
*
var_16
=
__visc__createNodeND
(
0
,
var_16_node
);
__visc__edge
(
var_15
,
var_16
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_15
,
var_16
,
1
,
1
,
1
,
0
);
void
*
var_17
=
__visc__createNodeND
(
0
,
var_17_node
);
__visc__edge
(
var_16
,
var_17
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_16
,
var_17
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_17
,
22
,
2
,
0
);
__visc__bindIn
(
var_17
,
23
,
3
,
0
);
void
*
var_18
=
__visc__createNodeND
(
0
,
var_18_node
);
__visc__edge
(
var_17
,
var_18
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_17
,
var_18
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_18
,
24
,
2
,
0
);
__visc__bindIn
(
var_18
,
25
,
3
,
0
);
void
*
var_19
=
__visc__createNodeND
(
0
,
var_19_node
);
__visc__edge
(
var_18
,
var_19
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_18
,
var_19
,
1
,
1
,
1
,
0
);
void
*
var_20
=
__visc__createNodeND
(
0
,
var_20_node
);
__visc__edge
(
var_19
,
var_20
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_19
,
var_20
,
1
,
1
,
1
,
0
);
void
*
var_21
=
__visc__createNodeND
(
0
,
var_21_node
);
__visc__edge
(
var_20
,
var_21
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_20
,
var_21
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_21
,
26
,
2
,
0
);
__visc__bindIn
(
var_21
,
27
,
3
,
0
);
void
*
var_22
=
__visc__createNodeND
(
0
,
var_22_node
);
__visc__edge
(
var_21
,
var_22
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_21
,
var_22
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_22
,
28
,
2
,
0
);
__visc__bindIn
(
var_22
,
29
,
3
,
0
);
void
*
var_23
=
__visc__createNodeND
(
0
,
var_23_node
);
__visc__edge
(
var_22
,
var_23
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_22
,
var_23
,
1
,
1
,
1
,
0
);
__visc__bindOut
(
var_23
,
0
,
0
,
0
);
__visc__bindOut
(
var_23
,
1
,
1
,
0
);
}
struct
ret_t
{
void
*
tensor
;
size_t
bytes
;
};
typedef
struct
__attribute__
((
__packed__
))
{
void
*
input
;
size_t
input_bytes
;
void
*
conv2d_1_w
;
size_t
conv2d_1_w_bytes
;
void
*
conv2d_1_b
;
size_t
conv2d_1_b_bytes
;
void
*
conv2d_2_w
;
size_t
conv2d_2_w_bytes
;
void
*
conv2d_2_b
;
size_t
conv2d_2_b_bytes
;
void
*
conv2d_3_w
;
size_t
conv2d_3_w_bytes
;
void
*
conv2d_3_b
;
size_t
conv2d_3_b_bytes
;
void
*
conv2d_4_w
;
size_t
conv2d_4_w_bytes
;
void
*
conv2d_4_b
;
size_t
conv2d_4_b_bytes
;
void
*
conv2d_5_w
;
size_t
conv2d_5_w_bytes
;
void
*
conv2d_5_b
;
size_t
conv2d_5_b_bytes
;
void
*
conv2d_6_w
;
size_t
conv2d_6_w_bytes
;
void
*
conv2d_6_b
;
size_t
conv2d_6_b_bytes
;
void
*
dense_1_w
;
size_t
dense_1_w_bytes
;
void
*
dense_1_b
;
size_t
dense_1_b_bytes
;
struct
ret_t
r
;
}
RootIn
;
int
main
(){
std
::
string
dir_prefix
=
std
::
string
(
"../../../../../../projects/hpvm-tensor-rt/model_params/alexnet2_cifar10_test/"
);
std
::
string
labels_path
=
dir_prefix
+
std
::
string
(
"labels.bin"
);
std
::
string
conv2d_1_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_1_w.bin"
);
void
*
conv2d_1_w
=
readTrainedWeights
(
conv2d_1_w_path
.
c_str
(),
0
,
32
,
3
,
3
,
3
);
std
::
string
conv2d_1_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_1_b.bin"
);
void
*
conv2d_1_b
=
readTrainedWeights
(
conv2d_1_b_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
conv2d_2_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_2_w.bin"
);
void
*
conv2d_2_w
=
readTrainedWeights
(
conv2d_2_w_path
.
c_str
(),
0
,
32
,
32
,
3
,
3
);
std
::
string
conv2d_2_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_2_b.bin"
);
void
*
conv2d_2_b
=
readTrainedWeights
(
conv2d_2_b_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
conv2d_3_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_3_w.bin"
);
void
*
conv2d_3_w
=
readTrainedWeights
(
conv2d_3_w_path
.
c_str
(),
0
,
64
,
32
,
3
,
3
);
std
::
string
conv2d_3_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_3_b.bin"
);
void
*
conv2d_3_b
=
readTrainedWeights
(
conv2d_3_b_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
conv2d_4_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_4_w.bin"
);
void
*
conv2d_4_w
=
readTrainedWeights
(
conv2d_4_w_path
.
c_str
(),
0
,
64
,
64
,
3
,
3
);
std
::
string
conv2d_4_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_4_b.bin"
);
void
*
conv2d_4_b
=
readTrainedWeights
(
conv2d_4_b_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
conv2d_5_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_5_w.bin"
);
void
*
conv2d_5_w
=
readTrainedWeights
(
conv2d_5_w_path
.
c_str
(),
0
,
128
,
64
,
3
,
3
);
std
::
string
conv2d_5_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_5_b.bin"
);
void
*
conv2d_5_b
=
readTrainedWeights
(
conv2d_5_b_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
conv2d_6_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_6_w.bin"
);
void
*
conv2d_6_w
=
readTrainedWeights
(
conv2d_6_w_path
.
c_str
(),
0
,
128
,
128
,
3
,
3
);
std
::
string
conv2d_6_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_6_b.bin"
);
void
*
conv2d_6_b
=
readTrainedWeights
(
conv2d_6_b_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
dense_1_w_path
=
dir_prefix
+
std
::
string
(
"dense_1_w.bin"
);
void
*
dense_1_w
=
readTrainedWeights
(
dense_1_w_path
.
c_str
(),
0
,
1
,
1
,
2048
,
10
);
std
::
string
dense_1_b_path
=
dir_prefix
+
std
::
string
(
"dense_1_b.bin"
);
void
*
dense_1_b
=
readTrainedWeights
(
dense_1_b_path
.
c_str
(),
0
,
1
,
10
,
1
,
1
);
//void* input = readTrainedWeights(input_path.c_str(), 0,10000,3,32,32);
//uint8_t* labels = readLabels(labels_path.c_str(),10000);
__visc__init
();
RootIn
*
args
=
static_cast
<
RootIn
*>
(
malloc
(
sizeof
(
RootIn
)));
args
->
conv2d_1_w
=
conv2d_1_w
;
args
->
conv2d_1_w_bytes
=
0
;
args
->
conv2d_1_b
=
conv2d_1_b
;
args
->
conv2d_1_b_bytes
=
0
;
args
->
conv2d_2_w
=
conv2d_2_w
;
args
->
conv2d_2_w_bytes
=
0
;
args
->
conv2d_2_b
=
conv2d_2_b
;
args
->
conv2d_2_b_bytes
=
0
;
args
->
conv2d_3_w
=
conv2d_3_w
;
args
->
conv2d_3_w_bytes
=
0
;
args
->
conv2d_3_b
=
conv2d_3_b
;
args
->
conv2d_3_b_bytes
=
0
;
args
->
conv2d_4_w
=
conv2d_4_w
;
args
->
conv2d_4_w_bytes
=
0
;
args
->
conv2d_4_b
=
conv2d_4_b
;
args
->
conv2d_4_b_bytes
=
0
;
args
->
conv2d_5_w
=
conv2d_5_w
;
args
->
conv2d_5_w_bytes
=
0
;
args
->
conv2d_5_b
=
conv2d_5_b
;
args
->
conv2d_5_b_bytes
=
0
;
args
->
conv2d_6_w
=
conv2d_6_w
;
args
->
conv2d_6_w_bytes
=
0
;
args
->
conv2d_6_b
=
conv2d_6_b
;
args
->
conv2d_6_b_bytes
=
0
;
args
->
dense_1_w
=
dense_1_w
;
args
->
dense_1_w_bytes
=
0
;
args
->
dense_1_b
=
dense_1_b
;
args
->
dense_1_b_bytes
=
0
;
int
batch_size
=
500
;
int
test_input_size
=
10000
;
int
batch_count
=
test_input_size
/
batch_size
;
std
::
string
input_path
=
dir_prefix
+
std
::
string
(
"input.bin"
);
void
*
input
=
create4DTensor
(
0
,
nchw
,
batch_size
,
3
,
32
,
32
);
startMemTracking
();
for
(
int
i
=
0
;
i
<
batch_count
;
i
++
){
int
start
=
i
*
batch_size
;
int
end
=
(
i
+
1
)
*
batch_size
;
copyInputBatch
(
input_path
.
c_str
(),
start
,
end
,
3
,
32
,
32
,
input
);
args
->
input
=
input
;
args
->
input_bytes
=
0
;
void
*
dfg
=
__visc__launch
(
0
,
root
,
(
void
*
)
args
);
__visc__wait
(
dfg
);
void
*
result
=
static_cast
<
RootIn
*>
(
args
)
->
input
;
hpvm_request_tensor
(
result
,
0
);
uint8_t
*
labels
=
readLabelsBatch
(
labels_path
.
c_str
(),
start
,
end
);
computeAccuracy2
(
labels
,
batch_size
,
result
);
llvm_hpvm_invokeRtControl
(
result
,
labels
);
freeBatchMemory
();
}
__visc__cleanup
();
return
0
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment