Skip to content
Snippets Groups Projects
Commit a4f3627d authored by Hashim Sharif's avatar Hashim Sharif
Browse files

Adding Alexnet2 source with Mini-batching Loop

parent 31fa1c61
No related branches found
No related tags found
No related merge requests found
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <cstring>
#include <visc.h>
#include <tensorTypes.h>
#include <tensorUtils.h>
void var_0_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_1_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_2_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_3_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_4_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_5_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_6_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_pool_max(t1, 2, 2, 0, 0, 2, 2);
__visc__return(2, r, (size_t) 0);
}
void var_7_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_8_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_9_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_10_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_11_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_12_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_13_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_pool_max(t1, 2, 2, 0, 0, 2, 2);
__visc__return(2, r, (size_t) 0);
}
void var_14_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_15_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_16_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_17_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_convolution(t1, t2, 1, 1, 1, 1);
__visc__return(2, r, (size_t) 0);
}
void var_18_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_19_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_tanh(t1);
__visc__return(2, r, (size_t) 0);
}
void var_20_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_pool_max(t1, 2, 2, 0, 0, 2, 2);
__visc__return(2, r, (size_t) 0);
}
void var_21_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_mul(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_22_node(void* t1, size_t bytes_t1, void* t2, size_t bytes_t2) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(2, t1, t2, 0);
void *r = __visc__tensor_add(t1, t2);
__visc__return(2, r, (size_t) 0);
}
void var_23_node(void* t1, size_t bytes_t1) {
__visc__hint(visc::CUDNN_TARGET);
__visc__attributes(1, t1, 0);
void* r = __visc__tensor_softmax(t1);
__visc__return(2, r, (size_t) 0);
}
void root(void* input, size_t input_bytes,
void* conv2d_1_w, size_t conv2d_1_w_bytes,
void* conv2d_1_b, size_t conv2d_1_b_bytes,
void* conv2d_2_w, size_t conv2d_2_w_bytes,
void* conv2d_2_b, size_t conv2d_2_b_bytes,
void* conv2d_3_w, size_t conv2d_3_w_bytes,
void* conv2d_3_b, size_t conv2d_3_b_bytes,
void* conv2d_4_w, size_t conv2d_4_w_bytes,
void* conv2d_4_b, size_t conv2d_4_b_bytes,
void* conv2d_5_w, size_t conv2d_5_w_bytes,
void* conv2d_5_b, size_t conv2d_5_b_bytes,
void* conv2d_6_w, size_t conv2d_6_w_bytes,
void* conv2d_6_b, size_t conv2d_6_b_bytes,
void* dense_1_w, size_t dense_1_w_bytes,
void* dense_1_b, size_t dense_1_b_bytes){
__visc__hint(visc::CPU_TARGET);
__visc__attributes(15, input, conv2d_1_w, conv2d_1_b, conv2d_2_w, conv2d_2_b, conv2d_3_w, conv2d_3_b, conv2d_4_w, conv2d_4_b, conv2d_5_w, conv2d_5_b, conv2d_6_w, conv2d_6_b, dense_1_w, dense_1_b, 0);
void* var_0 = __visc__createNodeND(0, var_0_node);
__visc__bindIn(var_0, 0, 0, 0);
__visc__bindIn(var_0, 1, 1, 0);
__visc__bindIn(var_0, 2, 2, 0);
__visc__bindIn(var_0, 3, 3, 0);
void* var_1 = __visc__createNodeND(0, var_1_node);
__visc__edge(var_0, var_1, 1, 0, 0, 0);
__visc__edge(var_0, var_1, 1, 1, 1, 0);
__visc__bindIn(var_1, 4, 2, 0);
__visc__bindIn(var_1, 5, 3, 0);
void* var_2 = __visc__createNodeND(0, var_2_node);
__visc__edge(var_1, var_2, 1, 0, 0, 0);
__visc__edge(var_1, var_2, 1, 1, 1, 0);
void* var_3 = __visc__createNodeND(0, var_3_node);
__visc__edge(var_2, var_3, 1, 0, 0, 0);
__visc__edge(var_2, var_3, 1, 1, 1, 0);
__visc__bindIn(var_3, 6, 2, 0);
__visc__bindIn(var_3, 7, 3, 0);
void* var_4 = __visc__createNodeND(0, var_4_node);
__visc__edge(var_3, var_4, 1, 0, 0, 0);
__visc__edge(var_3, var_4, 1, 1, 1, 0);
__visc__bindIn(var_4, 8, 2, 0);
__visc__bindIn(var_4, 9, 3, 0);
void* var_5 = __visc__createNodeND(0, var_5_node);
__visc__edge(var_4, var_5, 1, 0, 0, 0);
__visc__edge(var_4, var_5, 1, 1, 1, 0);
void* var_6 = __visc__createNodeND(0, var_6_node);
__visc__edge(var_5, var_6, 1, 0, 0, 0);
__visc__edge(var_5, var_6, 1, 1, 1, 0);
void* var_7 = __visc__createNodeND(0, var_7_node);
__visc__edge(var_6, var_7, 1, 0, 0, 0);
__visc__edge(var_6, var_7, 1, 1, 1, 0);
__visc__bindIn(var_7, 10, 2, 0);
__visc__bindIn(var_7, 11, 3, 0);
void* var_8 = __visc__createNodeND(0, var_8_node);
__visc__edge(var_7, var_8, 1, 0, 0, 0);
__visc__edge(var_7, var_8, 1, 1, 1, 0);
__visc__bindIn(var_8, 12, 2, 0);
__visc__bindIn(var_8, 13, 3, 0);
void* var_9 = __visc__createNodeND(0, var_9_node);
__visc__edge(var_8, var_9, 1, 0, 0, 0);
__visc__edge(var_8, var_9, 1, 1, 1, 0);
void* var_10 = __visc__createNodeND(0, var_10_node);
__visc__edge(var_9, var_10, 1, 0, 0, 0);
__visc__edge(var_9, var_10, 1, 1, 1, 0);
__visc__bindIn(var_10, 14, 2, 0);
__visc__bindIn(var_10, 15, 3, 0);
void* var_11 = __visc__createNodeND(0, var_11_node);
__visc__edge(var_10, var_11, 1, 0, 0, 0);
__visc__edge(var_10, var_11, 1, 1, 1, 0);
__visc__bindIn(var_11, 16, 2, 0);
__visc__bindIn(var_11, 17, 3, 0);
void* var_12 = __visc__createNodeND(0, var_12_node);
__visc__edge(var_11, var_12, 1, 0, 0, 0);
__visc__edge(var_11, var_12, 1, 1, 1, 0);
void* var_13 = __visc__createNodeND(0, var_13_node);
__visc__edge(var_12, var_13, 1, 0, 0, 0);
__visc__edge(var_12, var_13, 1, 1, 1, 0);
void* var_14 = __visc__createNodeND(0, var_14_node);
__visc__edge(var_13, var_14, 1, 0, 0, 0);
__visc__edge(var_13, var_14, 1, 1, 1, 0);
__visc__bindIn(var_14, 18, 2, 0);
__visc__bindIn(var_14, 19, 3, 0);
void* var_15 = __visc__createNodeND(0, var_15_node);
__visc__edge(var_14, var_15, 1, 0, 0, 0);
__visc__edge(var_14, var_15, 1, 1, 1, 0);
__visc__bindIn(var_15, 20, 2, 0);
__visc__bindIn(var_15, 21, 3, 0);
void* var_16 = __visc__createNodeND(0, var_16_node);
__visc__edge(var_15, var_16, 1, 0, 0, 0);
__visc__edge(var_15, var_16, 1, 1, 1, 0);
void* var_17 = __visc__createNodeND(0, var_17_node);
__visc__edge(var_16, var_17, 1, 0, 0, 0);
__visc__edge(var_16, var_17, 1, 1, 1, 0);
__visc__bindIn(var_17, 22, 2, 0);
__visc__bindIn(var_17, 23, 3, 0);
void* var_18 = __visc__createNodeND(0, var_18_node);
__visc__edge(var_17, var_18, 1, 0, 0, 0);
__visc__edge(var_17, var_18, 1, 1, 1, 0);
__visc__bindIn(var_18, 24, 2, 0);
__visc__bindIn(var_18, 25, 3, 0);
void* var_19 = __visc__createNodeND(0, var_19_node);
__visc__edge(var_18, var_19, 1, 0, 0, 0);
__visc__edge(var_18, var_19, 1, 1, 1, 0);
void* var_20 = __visc__createNodeND(0, var_20_node);
__visc__edge(var_19, var_20, 1, 0, 0, 0);
__visc__edge(var_19, var_20, 1, 1, 1, 0);
void* var_21 = __visc__createNodeND(0, var_21_node);
__visc__edge(var_20, var_21, 1, 0, 0, 0);
__visc__edge(var_20, var_21, 1, 1, 1, 0);
__visc__bindIn(var_21, 26, 2, 0);
__visc__bindIn(var_21, 27, 3, 0);
void* var_22 = __visc__createNodeND(0, var_22_node);
__visc__edge(var_21, var_22, 1, 0, 0, 0);
__visc__edge(var_21, var_22, 1, 1, 1, 0);
__visc__bindIn(var_22, 28, 2, 0);
__visc__bindIn(var_22, 29, 3, 0);
void* var_23 = __visc__createNodeND(0, var_23_node);
__visc__edge(var_22, var_23, 1, 0, 0, 0);
__visc__edge(var_22, var_23, 1, 1, 1, 0);
__visc__bindOut(var_23, 0, 0, 0);
__visc__bindOut(var_23, 1, 1, 0);
}
struct ret_t {
void* tensor;
size_t bytes;
};
typedef struct __attribute__((__packed__)) {
void* input;
size_t input_bytes;
void* conv2d_1_w;
size_t conv2d_1_w_bytes;
void* conv2d_1_b;
size_t conv2d_1_b_bytes;
void* conv2d_2_w;
size_t conv2d_2_w_bytes;
void* conv2d_2_b;
size_t conv2d_2_b_bytes;
void* conv2d_3_w;
size_t conv2d_3_w_bytes;
void* conv2d_3_b;
size_t conv2d_3_b_bytes;
void* conv2d_4_w;
size_t conv2d_4_w_bytes;
void* conv2d_4_b;
size_t conv2d_4_b_bytes;
void* conv2d_5_w;
size_t conv2d_5_w_bytes;
void* conv2d_5_b;
size_t conv2d_5_b_bytes;
void* conv2d_6_w;
size_t conv2d_6_w_bytes;
void* conv2d_6_b;
size_t conv2d_6_b_bytes;
void* dense_1_w;
size_t dense_1_w_bytes;
void* dense_1_b;
size_t dense_1_b_bytes;
struct ret_t r;
}
RootIn;
int main(){
std::string dir_prefix = std::string("../../../../../../projects/hpvm-tensor-rt/model_params/alexnet2_cifar10_test/");
std::string labels_path = dir_prefix + std::string("labels.bin");
std::string conv2d_1_w_path = dir_prefix + std::string("conv2d_1_w.bin");
void* conv2d_1_w = readTrainedWeights(conv2d_1_w_path.c_str(), 0,32,3,3,3);
std::string conv2d_1_b_path = dir_prefix + std::string("conv2d_1_b.bin");
void* conv2d_1_b = readTrainedWeights(conv2d_1_b_path.c_str(), 0,1,32,1,1);
std::string conv2d_2_w_path = dir_prefix + std::string("conv2d_2_w.bin");
void* conv2d_2_w = readTrainedWeights(conv2d_2_w_path.c_str(), 0,32,32,3,3);
std::string conv2d_2_b_path = dir_prefix + std::string("conv2d_2_b.bin");
void* conv2d_2_b = readTrainedWeights(conv2d_2_b_path.c_str(), 0,1,32,1,1);
std::string conv2d_3_w_path = dir_prefix + std::string("conv2d_3_w.bin");
void* conv2d_3_w = readTrainedWeights(conv2d_3_w_path.c_str(), 0,64,32,3,3);
std::string conv2d_3_b_path = dir_prefix + std::string("conv2d_3_b.bin");
void* conv2d_3_b = readTrainedWeights(conv2d_3_b_path.c_str(), 0,1,64,1,1);
std::string conv2d_4_w_path = dir_prefix + std::string("conv2d_4_w.bin");
void* conv2d_4_w = readTrainedWeights(conv2d_4_w_path.c_str(), 0,64,64,3,3);
std::string conv2d_4_b_path = dir_prefix + std::string("conv2d_4_b.bin");
void* conv2d_4_b = readTrainedWeights(conv2d_4_b_path.c_str(), 0,1,64,1,1);
std::string conv2d_5_w_path = dir_prefix + std::string("conv2d_5_w.bin");
void* conv2d_5_w = readTrainedWeights(conv2d_5_w_path.c_str(), 0,128,64,3,3);
std::string conv2d_5_b_path = dir_prefix + std::string("conv2d_5_b.bin");
void* conv2d_5_b = readTrainedWeights(conv2d_5_b_path.c_str(), 0,1,128,1,1);
std::string conv2d_6_w_path = dir_prefix + std::string("conv2d_6_w.bin");
void* conv2d_6_w = readTrainedWeights(conv2d_6_w_path.c_str(), 0,128,128,3,3);
std::string conv2d_6_b_path = dir_prefix + std::string("conv2d_6_b.bin");
void* conv2d_6_b = readTrainedWeights(conv2d_6_b_path.c_str(), 0,1,128,1,1);
std::string dense_1_w_path = dir_prefix + std::string("dense_1_w.bin");
void* dense_1_w = readTrainedWeights(dense_1_w_path.c_str(), 0,1,1,2048,10);
std::string dense_1_b_path = dir_prefix + std::string("dense_1_b.bin");
void* dense_1_b = readTrainedWeights(dense_1_b_path.c_str(), 0,1,10,1,1);
//void* input = readTrainedWeights(input_path.c_str(), 0,10000,3,32,32);
//uint8_t* labels = readLabels(labels_path.c_str(),10000);
__visc__init();
RootIn* args = static_cast<RootIn*>(malloc(sizeof(RootIn)));
args->conv2d_1_w = conv2d_1_w;
args->conv2d_1_w_bytes = 0;
args->conv2d_1_b = conv2d_1_b;
args->conv2d_1_b_bytes = 0;
args->conv2d_2_w = conv2d_2_w;
args->conv2d_2_w_bytes = 0;
args->conv2d_2_b = conv2d_2_b;
args->conv2d_2_b_bytes = 0;
args->conv2d_3_w = conv2d_3_w;
args->conv2d_3_w_bytes = 0;
args->conv2d_3_b = conv2d_3_b;
args->conv2d_3_b_bytes = 0;
args->conv2d_4_w = conv2d_4_w;
args->conv2d_4_w_bytes = 0;
args->conv2d_4_b = conv2d_4_b;
args->conv2d_4_b_bytes = 0;
args->conv2d_5_w = conv2d_5_w;
args->conv2d_5_w_bytes = 0;
args->conv2d_5_b = conv2d_5_b;
args->conv2d_5_b_bytes = 0;
args->conv2d_6_w = conv2d_6_w;
args->conv2d_6_w_bytes = 0;
args->conv2d_6_b = conv2d_6_b;
args->conv2d_6_b_bytes = 0;
args->dense_1_w = dense_1_w;
args->dense_1_w_bytes = 0;
args->dense_1_b = dense_1_b;
args->dense_1_b_bytes = 0;
int batch_size = 500;
int test_input_size = 10000;
int batch_count = test_input_size / batch_size;
std::string input_path = dir_prefix + std::string("input.bin");
void* input = create4DTensor(0,nchw,batch_size,3,32,32);
startMemTracking();
for (int i = 0; i < batch_count; i++){
int start = i * batch_size;
int end = (i + 1) * batch_size;
copyInputBatch(input_path.c_str(),start,end,3,32,32, input);
args->input = input;
args->input_bytes = 0;
void* dfg = __visc__launch(0, root, (void*) args);
__visc__wait(dfg);
void *result = static_cast<RootIn*>(args)->input;
hpvm_request_tensor(result, 0);
uint8_t* labels = readLabelsBatch(labels_path.c_str(),start,end);
computeAccuracy2(labels, batch_size, result);
llvm_hpvm_invokeRtControl(result, labels);
freeBatchMemory();
}
__visc__cleanup();
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment